| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2014-2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | template <typename T> | 
 | Array<T, 4, 1> four_denorms(); | 
 |  | 
 | template <> | 
 | Array4f four_denorms() { | 
 |   return Array4f(5.60844e-39f, -5.60844e-39f, 4.94e-44f, -4.94e-44f); | 
 | } | 
 | template <> | 
 | Array4d four_denorms() { | 
 |   return Array4d(5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324); | 
 | } | 
 | template <typename T> | 
 | Array<T, 4, 1> four_denorms() { | 
 |   return four_denorms<double>().cast<T>(); | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | void svd_fill_random(MatrixType &m, int Option = 0) { | 
 |   using std::pow; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   Index diagSize = (std::min)(m.rows(), m.cols()); | 
 |   RealScalar s = std::numeric_limits<RealScalar>::max_exponent10 / 4; | 
 |   s = internal::random<RealScalar>(1, s); | 
 |   Matrix<RealScalar, Dynamic, 1> d = Matrix<RealScalar, Dynamic, 1>::Random(diagSize); | 
 |   for (Index k = 0; k < diagSize; ++k) d(k) = d(k) * pow(RealScalar(10), internal::random<RealScalar>(-s, s)); | 
 |  | 
 |   bool dup = internal::random<int>(0, 10) < 3; | 
 |   bool unit_uv = | 
 |       internal::random<int>(0, 10) < (dup ? 7 : 3);  // if we duplicate some diagonal entries, then increase the chance | 
 |                                                      // to preserve them using unitary U and V factors | 
 |  | 
 |   // duplicate some singular values | 
 |   if (dup) { | 
 |     Index n = internal::random<Index>(0, d.size() - 1); | 
 |     for (Index i = 0; i < n; ++i) | 
 |       d(internal::random<Index>(0, d.size() - 1)) = d(internal::random<Index>(0, d.size() - 1)); | 
 |   } | 
 |  | 
 |   Matrix<Scalar, Dynamic, Dynamic> U(m.rows(), diagSize); | 
 |   Matrix<Scalar, Dynamic, Dynamic> VT(diagSize, m.cols()); | 
 |   if (unit_uv) { | 
 |     // in very rare cases let's try with a pure diagonal matrix | 
 |     if (internal::random<int>(0, 10) < 1) { | 
 |       U.setIdentity(); | 
 |       VT.setIdentity(); | 
 |     } else { | 
 |       createRandomPIMatrixOfRank(diagSize, U.rows(), U.cols(), U); | 
 |       createRandomPIMatrixOfRank(diagSize, VT.rows(), VT.cols(), VT); | 
 |     } | 
 |   } else { | 
 |     U.setRandom(); | 
 |     VT.setRandom(); | 
 |   } | 
 |  | 
 |   Matrix<Scalar, Dynamic, 1> samples(9); | 
 |   samples << Scalar(0), four_denorms<RealScalar>(), -RealScalar(1) / NumTraits<RealScalar>::highest(), | 
 |       RealScalar(1) / NumTraits<RealScalar>::highest(), (std::numeric_limits<RealScalar>::min)(), | 
 |       pow((std::numeric_limits<RealScalar>::min)(), RealScalar(0.8)); | 
 |  | 
 |   if (Option == Symmetric) { | 
 |     m = U * d.asDiagonal() * U.transpose(); | 
 |  | 
 |     // randomly nullify some rows/columns | 
 |     { | 
 |       Index count = internal::random<Index>(-diagSize, diagSize); | 
 |       for (Index k = 0; k < count; ++k) { | 
 |         Index i = internal::random<Index>(0, diagSize - 1); | 
 |         m.row(i).setZero(); | 
 |         m.col(i).setZero(); | 
 |       } | 
 |       if (count < 0) | 
 |         // (partly) cancel some coeffs | 
 |         if (!(dup && unit_uv)) { | 
 |           Index n = internal::random<Index>(0, m.size() - 1); | 
 |           for (Index k = 0; k < n; ++k) { | 
 |             Index i = internal::random<Index>(0, m.rows() - 1); | 
 |             Index j = internal::random<Index>(0, m.cols() - 1); | 
 |             m(j, i) = m(i, j) = samples(internal::random<Index>(0, samples.size() - 1)); | 
 |             if (NumTraits<Scalar>::IsComplex) | 
 |               *(&numext::real_ref(m(j, i)) + 1) = *(&numext::real_ref(m(i, j)) + 1) = | 
 |                   samples.real()(internal::random<Index>(0, samples.size() - 1)); | 
 |           } | 
 |         } | 
 |     } | 
 |   } else { | 
 |     m = U * d.asDiagonal() * VT; | 
 |     // (partly) cancel some coeffs | 
 |     if (!(dup && unit_uv)) { | 
 |       Index n = internal::random<Index>(0, m.size() - 1); | 
 |       for (Index k = 0; k < n; ++k) { | 
 |         Index i = internal::random<Index>(0, m.rows() - 1); | 
 |         Index j = internal::random<Index>(0, m.cols() - 1); | 
 |         m(i, j) = samples(internal::random<Index>(0, samples.size() - 1)); | 
 |         if (NumTraits<Scalar>::IsComplex) | 
 |           *(&numext::real_ref(m(i, j)) + 1) = samples.real()(internal::random<Index>(0, samples.size() - 1)); | 
 |       } | 
 |     } | 
 |   } | 
 | } |