|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2023 | 
|  | // Alejandro Acosta    Codeplay Software Ltd. | 
|  | // Contact: <eigen@codeplay.com> | 
|  | // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #define EIGEN_TEST_NO_LONGDOUBLE | 
|  | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int | 
|  |  | 
|  | #define EIGEN_USE_SYCL | 
|  | #include "main.h" | 
|  |  | 
|  | #include <Eigen/Dense> | 
|  |  | 
|  | template <bool verifyNan = false, bool singleTask = false, typename Operation, typename Input, typename Output> | 
|  | void run_and_verify(Operation& ope, size_t num_elements, const Input& in, Output& out) { | 
|  | Output out_gpu, out_cpu; | 
|  | out_gpu = out_cpu = out; | 
|  | auto queue = sycl::queue{sycl::default_selector_v}; | 
|  |  | 
|  | auto in_size_bytes = sizeof(typename Input::Scalar) * in.size(); | 
|  | auto out_size_bytes = sizeof(typename Output::Scalar) * out.size(); | 
|  | auto in_d = sycl::malloc_device<typename Input::Scalar>(in.size(), queue); | 
|  | auto out_d = sycl::malloc_device<typename Output::Scalar>(out.size(), queue); | 
|  |  | 
|  | queue.memcpy(in_d, in.data(), in_size_bytes).wait(); | 
|  | queue.memcpy(out_d, out.data(), out_size_bytes).wait(); | 
|  |  | 
|  | if constexpr (singleTask) { | 
|  | queue.single_task([=]() { ope(in_d, out_d); }).wait(); | 
|  | } else { | 
|  | queue | 
|  | .parallel_for(sycl::range{num_elements}, | 
|  | [=](sycl::id<1> idx) { | 
|  | auto id = idx[0]; | 
|  | ope(id, in_d, out_d); | 
|  | }) | 
|  | .wait(); | 
|  | } | 
|  |  | 
|  | queue.memcpy(out_gpu.data(), out_d, out_size_bytes).wait(); | 
|  |  | 
|  | sycl::free(in_d, queue); | 
|  | sycl::free(out_d, queue); | 
|  |  | 
|  | queue.throw_asynchronous(); | 
|  |  | 
|  | // Run on CPU and compare the output | 
|  | if constexpr (singleTask == 1) { | 
|  | ope(in.data(), out_cpu.data()); | 
|  | } else { | 
|  | for (size_t i = 0; i < num_elements; ++i) { | 
|  | ope(i, in.data(), out_cpu.data()); | 
|  | } | 
|  | } | 
|  | if constexpr (verifyNan) { | 
|  | VERIFY_IS_CWISE_APPROX(out_gpu, out_cpu); | 
|  | } else { | 
|  | VERIFY_IS_APPROX(out_gpu, out_cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename DataType, typename Input, typename Output> | 
|  | void test_coeff_wise(size_t num_elements, const Input& in, Output& out) { | 
|  | auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { | 
|  | DataType x1(in + i); | 
|  | DataType x2(in + i + 1); | 
|  | DataType x3(in + i + 2); | 
|  | Map<DataType> res(out + i * DataType::MaxSizeAtCompileTime); | 
|  |  | 
|  | res.array() += (in[0] * x1 + x2).array() * x3.array(); | 
|  | }; | 
|  |  | 
|  | run_and_verify(operation, num_elements, in, out); | 
|  | } | 
|  |  | 
|  | template <typename DataType, typename Input, typename Output> | 
|  | void test_complex_sqrt(size_t num_elements, const Input& in, Output& out) { | 
|  | auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { | 
|  | using namespace Eigen; | 
|  | typedef typename DataType::Scalar ComplexType; | 
|  | typedef typename DataType::Scalar::value_type ValueType; | 
|  | const int num_special_inputs = 18; | 
|  |  | 
|  | if (i == 0) { | 
|  | const ValueType nan = std::numeric_limits<ValueType>::quiet_NaN(); | 
|  | typedef Eigen::Vector<ComplexType, num_special_inputs> SpecialInputs; | 
|  | SpecialInputs special_in; | 
|  | special_in.setZero(); | 
|  | int idx = 0; | 
|  | special_in[idx++] = ComplexType(0, 0); | 
|  | special_in[idx++] = ComplexType(-0, 0); | 
|  | special_in[idx++] = ComplexType(0, -0); | 
|  | special_in[idx++] = ComplexType(-0, -0); | 
|  | const ValueType inf = std::numeric_limits<ValueType>::infinity(); | 
|  | special_in[idx++] = ComplexType(1.0, inf); | 
|  | special_in[idx++] = ComplexType(nan, inf); | 
|  | special_in[idx++] = ComplexType(1.0, -inf); | 
|  | special_in[idx++] = ComplexType(nan, -inf); | 
|  | special_in[idx++] = ComplexType(-inf, 1.0); | 
|  | special_in[idx++] = ComplexType(inf, 1.0); | 
|  | special_in[idx++] = ComplexType(-inf, -1.0); | 
|  | special_in[idx++] = ComplexType(inf, -1.0); | 
|  | special_in[idx++] = ComplexType(-inf, nan); | 
|  | special_in[idx++] = ComplexType(inf, nan); | 
|  | special_in[idx++] = ComplexType(1.0, nan); | 
|  | special_in[idx++] = ComplexType(nan, 1.0); | 
|  | special_in[idx++] = ComplexType(nan, -1.0); | 
|  | special_in[idx++] = ComplexType(nan, nan); | 
|  |  | 
|  | Map<SpecialInputs> special_out(out); | 
|  | special_out = special_in.cwiseSqrt(); | 
|  | } | 
|  |  | 
|  | DataType x1(in + i); | 
|  | Map<DataType> res(out + num_special_inputs + i * DataType::MaxSizeAtCompileTime); | 
|  | res = x1.cwiseSqrt(); | 
|  | }; | 
|  | run_and_verify<true>(operation, num_elements, in, out); | 
|  | } | 
|  |  | 
|  | template <typename DataType, typename Input, typename Output> | 
|  | void test_complex_operators(size_t num_elements, const Input& in, Output& out) { | 
|  | auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { | 
|  | using namespace Eigen; | 
|  | typedef typename DataType::Scalar ComplexType; | 
|  | typedef typename DataType::Scalar::value_type ValueType; | 
|  | const int num_scalar_operators = 24; | 
|  | const int num_vector_operators = 23;  // no unary + operator. | 
|  | size_t out_idx = i * (num_scalar_operators + num_vector_operators * DataType::MaxSizeAtCompileTime); | 
|  |  | 
|  | // Scalar operators. | 
|  | const ComplexType a = in[i]; | 
|  | const ComplexType b = in[i + 1]; | 
|  |  | 
|  | out[out_idx++] = +a; | 
|  | out[out_idx++] = -a; | 
|  |  | 
|  | out[out_idx++] = a + b; | 
|  | out[out_idx++] = a + numext::real(b); | 
|  | out[out_idx++] = numext::real(a) + b; | 
|  | out[out_idx++] = a - b; | 
|  | out[out_idx++] = a - numext::real(b); | 
|  | out[out_idx++] = numext::real(a) - b; | 
|  | out[out_idx++] = a * b; | 
|  | out[out_idx++] = a * numext::real(b); | 
|  | out[out_idx++] = numext::real(a) * b; | 
|  | out[out_idx++] = a / b; | 
|  | out[out_idx++] = a / numext::real(b); | 
|  | out[out_idx++] = numext::real(a) / b; | 
|  |  | 
|  | out[out_idx] = a; | 
|  | out[out_idx++] += b; | 
|  | out[out_idx] = a; | 
|  | out[out_idx++] -= b; | 
|  | out[out_idx] = a; | 
|  | out[out_idx++] *= b; | 
|  | out[out_idx] = a; | 
|  | out[out_idx++] /= b; | 
|  |  | 
|  | const ComplexType true_value = ComplexType(ValueType(1), ValueType(0)); | 
|  | const ComplexType false_value = ComplexType(ValueType(0), ValueType(0)); | 
|  | out[out_idx++] = (a == b ? true_value : false_value); | 
|  | out[out_idx++] = (a == numext::real(b) ? true_value : false_value); | 
|  | out[out_idx++] = (numext::real(a) == b ? true_value : false_value); | 
|  | out[out_idx++] = (a != b ? true_value : false_value); | 
|  | out[out_idx++] = (a != numext::real(b) ? true_value : false_value); | 
|  | out[out_idx++] = (numext::real(a) != b ? true_value : false_value); | 
|  |  | 
|  | // Vector versions. | 
|  | DataType x1(in + i); | 
|  | DataType x2(in + i + 1); | 
|  | const int res_size = DataType::MaxSizeAtCompileTime * num_scalar_operators; | 
|  | const int size = DataType::MaxSizeAtCompileTime; | 
|  | int block_idx = 0; | 
|  |  | 
|  | Map<VectorX<ComplexType>> res(out + out_idx, res_size); | 
|  | res.segment(block_idx, size) = -x1; | 
|  | block_idx += size; | 
|  |  | 
|  | res.segment(block_idx, size) = x1 + x2; | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1 + x2.real(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.real() + x2; | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1 - x2; | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1 - x2.real(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.real() - x2; | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.array() * x2.array(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.array() * x2.real().array(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.real().array() * x2.array(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.array() / x2.array(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.array() / x2.real().array(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.real().array() / x2.array(); | 
|  | block_idx += size; | 
|  |  | 
|  | res.segment(block_idx, size) = x1; | 
|  | res.segment(block_idx, size) += x2; | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1; | 
|  | res.segment(block_idx, size) -= x2; | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1; | 
|  | res.segment(block_idx, size).array() *= x2.array(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1; | 
|  | res.segment(block_idx, size).array() /= x2.array(); | 
|  | block_idx += size; | 
|  |  | 
|  | const DataType true_vector = DataType::Constant(true_value); | 
|  | const DataType false_vector = DataType::Constant(false_value); | 
|  | res.segment(block_idx, size) = (x1 == x2 ? true_vector : false_vector); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = (x1 == x2.real() ? true_vector : false_vector); | 
|  | block_idx += size; | 
|  | //        res.segment(block_idx, size) = (x1.real() == x2) ? true_vector : false_vector; | 
|  | //        block_idx += size; | 
|  | res.segment(block_idx, size) = (x1 != x2 ? true_vector : false_vector); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = (x1 != x2.real() ? true_vector : false_vector); | 
|  | block_idx += size; | 
|  | //        res.segment(block_idx, size) = (x1.real() != x2 ? true_vector : false_vector); | 
|  | //        block_idx += size; | 
|  | }; | 
|  | run_and_verify<true>(operation, num_elements, in, out); | 
|  | } | 
|  |  | 
|  | template <typename DataType, typename Input, typename Output> | 
|  | void test_redux(size_t num_elements, const Input& in, Output& out) { | 
|  | auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { | 
|  | using namespace Eigen; | 
|  | int N = 10; | 
|  | DataType x1(in + i); | 
|  | out[i * N + 0] = x1.minCoeff(); | 
|  | out[i * N + 1] = x1.maxCoeff(); | 
|  | out[i * N + 2] = x1.sum(); | 
|  | out[i * N + 3] = x1.prod(); | 
|  | out[i * N + 4] = x1.matrix().squaredNorm(); | 
|  | out[i * N + 5] = x1.matrix().norm(); | 
|  | out[i * N + 6] = x1.colwise().sum().maxCoeff(); | 
|  | out[i * N + 7] = x1.rowwise().maxCoeff().sum(); | 
|  | out[i * N + 8] = x1.matrix().colwise().squaredNorm().sum(); | 
|  | }; | 
|  | run_and_verify(operation, num_elements, in, out); | 
|  | } | 
|  |  | 
|  | template <typename DataType, typename Input, typename Output> | 
|  | void test_replicate(size_t num_elements, const Input& in, Output& out) { | 
|  | auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { | 
|  | using namespace Eigen; | 
|  | DataType x1(in + i); | 
|  | int step = x1.size() * 4; | 
|  | int stride = 3 * step; | 
|  |  | 
|  | typedef Map<Array<typename DataType::Scalar, Dynamic, Dynamic>> MapType; | 
|  | MapType(out + i * stride + 0 * step, x1.rows() * 2, x1.cols() * 2) = x1.replicate(2, 2); | 
|  | MapType(out + i * stride + 1 * step, x1.rows() * 3, x1.cols()) = in[i] * x1.colwise().replicate(3); | 
|  | MapType(out + i * stride + 2 * step, x1.rows(), x1.cols() * 3) = in[i] * x1.rowwise().replicate(3); | 
|  | }; | 
|  | run_and_verify(operation, num_elements, in, out); | 
|  | } | 
|  |  | 
|  | template <typename DataType1, typename DataType2, typename Input, typename Output> | 
|  | void test_product(size_t num_elements, const Input& in, Output& out) { | 
|  | auto operation = [](size_t i, const typename DataType1::Scalar* in, typename DataType1::Scalar* out) { | 
|  | using namespace Eigen; | 
|  | typedef Matrix<typename DataType1::Scalar, DataType1::RowsAtCompileTime, DataType2::ColsAtCompileTime> DataType3; | 
|  | DataType1 x1(in + i); | 
|  | DataType2 x2(in + i + 1); | 
|  | Map<DataType3> res(out + i * DataType3::MaxSizeAtCompileTime); | 
|  | res += in[i] * x1 * x2; | 
|  | }; | 
|  | run_and_verify(operation, num_elements, in, out); | 
|  | } | 
|  |  | 
|  | template <typename DataType1, typename DataType2, typename Input, typename Output> | 
|  | void test_diagonal(size_t num_elements, const Input& in, Output& out) { | 
|  | auto operation = [](size_t i, const typename DataType1::Scalar* in, typename DataType1::Scalar* out) { | 
|  | using namespace Eigen; | 
|  | DataType1 x1(in + i); | 
|  | Map<DataType2> res(out + i * DataType2::MaxSizeAtCompileTime); | 
|  | res += x1.diagonal(); | 
|  | }; | 
|  | run_and_verify(operation, num_elements, in, out); | 
|  | } | 
|  |  | 
|  | template <typename DataType, typename Input, typename Output> | 
|  | void test_eigenvalues_direct(size_t num_elements, const Input& in, Output& out) { | 
|  | auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { | 
|  | using namespace Eigen; | 
|  | typedef Matrix<typename DataType::Scalar, DataType::RowsAtCompileTime, 1> Vec; | 
|  | DataType M(in + i); | 
|  | Map<Vec> res(out + i * Vec::MaxSizeAtCompileTime); | 
|  | DataType A = M * M.adjoint(); | 
|  | SelfAdjointEigenSolver<DataType> eig; | 
|  | eig.computeDirect(A); | 
|  | res = eig.eigenvalues(); | 
|  | }; | 
|  | run_and_verify(operation, num_elements, in, out); | 
|  | } | 
|  |  | 
|  | template <typename DataType, typename Input, typename Output> | 
|  | void test_matrix_inverse(size_t num_elements, const Input& in, Output& out) { | 
|  | auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { | 
|  | using namespace Eigen; | 
|  | DataType M(in + i); | 
|  | Map<DataType> res(out + i * DataType::MaxSizeAtCompileTime); | 
|  | res = M.inverse(); | 
|  | }; | 
|  | run_and_verify(operation, num_elements, in, out); | 
|  | } | 
|  |  | 
|  | template <typename DataType, typename Input, typename Output> | 
|  | void test_numeric_limits(const Input& in, Output& out) { | 
|  | auto operation = [](const typename DataType::Scalar* in, typename DataType::Scalar* out) { | 
|  | EIGEN_UNUSED_VARIABLE(in) | 
|  | out[0] = numext::numeric_limits<float>::epsilon(); | 
|  | out[1] = (numext::numeric_limits<float>::max)(); | 
|  | out[2] = (numext::numeric_limits<float>::min)(); | 
|  | out[3] = numext::numeric_limits<float>::infinity(); | 
|  | out[4] = numext::numeric_limits<float>::quiet_NaN(); | 
|  | }; | 
|  | run_and_verify<true, true>(operation, 1, in, out); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(sycl_basic) { | 
|  | Eigen::VectorXf in, out; | 
|  | Eigen::VectorXcf cfin, cfout; | 
|  |  | 
|  | constexpr size_t num_elements = 100; | 
|  | constexpr size_t data_size = num_elements * 512; | 
|  | in.setRandom(data_size); | 
|  | out.setConstant(data_size, -1); | 
|  | cfin.setRandom(data_size); | 
|  | cfout.setConstant(data_size, -1); | 
|  |  | 
|  | CALL_SUBTEST(test_coeff_wise<Vector3f>(num_elements, in, out)); | 
|  | CALL_SUBTEST(test_coeff_wise<Array44f>(num_elements, in, out)); | 
|  |  | 
|  | CALL_SUBTEST(test_complex_operators<Vector3cf>(num_elements, cfin, cfout)); | 
|  | CALL_SUBTEST(test_complex_sqrt<Vector3cf>(num_elements, cfin, cfout)); | 
|  |  | 
|  | CALL_SUBTEST(test_redux<Array4f>(num_elements, in, out)); | 
|  | CALL_SUBTEST(test_redux<Matrix3f>(num_elements, in, out)); | 
|  |  | 
|  | CALL_SUBTEST(test_replicate<Array4f>(num_elements, in, out)); | 
|  | CALL_SUBTEST(test_replicate<Array33f>(num_elements, in, out)); | 
|  |  | 
|  | auto test_prod_mm = [&]() { test_product<Matrix3f, Matrix3f>(num_elements, in, out); }; | 
|  | auto test_prod_mv = [&]() { test_product<Matrix4f, Vector4f>(num_elements, in, out); }; | 
|  | CALL_SUBTEST(test_prod_mm()); | 
|  | CALL_SUBTEST(test_prod_mv()); | 
|  |  | 
|  | auto test_diagonal_mv3f = [&]() { test_diagonal<Matrix3f, Vector3f>(num_elements, in, out); }; | 
|  | auto test_diagonal_mv4f = [&]() { test_diagonal<Matrix4f, Vector4f>(num_elements, in, out); }; | 
|  | CALL_SUBTEST(test_diagonal_mv3f()); | 
|  | CALL_SUBTEST(test_diagonal_mv4f()); | 
|  |  | 
|  | CALL_SUBTEST(test_eigenvalues_direct<Matrix3f>(num_elements, in, out)); | 
|  | CALL_SUBTEST(test_eigenvalues_direct<Matrix2f>(num_elements, in, out)); | 
|  |  | 
|  | CALL_SUBTEST(test_matrix_inverse<Matrix2f>(num_elements, in, out)); | 
|  | CALL_SUBTEST(test_matrix_inverse<Matrix3f>(num_elements, in, out)); | 
|  | CALL_SUBTEST(test_matrix_inverse<Matrix4f>(num_elements, in, out)); | 
|  |  | 
|  | CALL_SUBTEST(test_numeric_limits<Vector3f>(in, out)); | 
|  | } |