|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_AUTODIFF_SCALAR_H | 
|  | #define EIGEN_AUTODIFF_SCALAR_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename A, typename B> | 
|  | struct make_coherent_impl { | 
|  | static void run(A&, B&) {} | 
|  | }; | 
|  |  | 
|  | // resize a to match b is a.size()==0, and conversely. | 
|  | template <typename A, typename B> | 
|  | void make_coherent(const A& a, const B& b) { | 
|  | make_coherent_impl<A, B>::run(a.const_cast_derived(), b.const_cast_derived()); | 
|  | } | 
|  |  | 
|  | template <typename DerivativeType, bool Enable> | 
|  | struct auto_diff_special_op; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | template <typename DerivativeType> | 
|  | class AutoDiffScalar; | 
|  |  | 
|  | template <typename NewDerType> | 
|  | inline AutoDiffScalar<NewDerType> MakeAutoDiffScalar(const typename NewDerType::Scalar& value, const NewDerType& der) { | 
|  | return AutoDiffScalar<NewDerType>(value, der); | 
|  | } | 
|  |  | 
|  | /** \class AutoDiffScalar | 
|  | * \brief A scalar type replacement with automatic differentiation capability | 
|  | * | 
|  | * \param DerivativeType the vector type used to store/represent the derivatives. The base scalar type | 
|  | *                 as well as the number of derivatives to compute are determined from this type. | 
|  | *                 Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf | 
|  | *                 if the number of derivatives is not known at compile time, and/or, the number | 
|  | *                 of derivatives is large. | 
|  | *                 Note that DerivativeType can also be a reference (e.g., \c VectorXf&) to wrap a | 
|  | *                 existing vector into an AutoDiffScalar. | 
|  | *                 Finally, DerivativeType can also be any Eigen compatible expression. | 
|  | * | 
|  | * This class represents a scalar value while tracking its respective derivatives using Eigen's expression | 
|  | * template mechanism. | 
|  | * | 
|  | * It supports the following list of global math function: | 
|  | *  - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos, | 
|  | *  - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos, | 
|  | *  - internal::conj, internal::real, internal::imag, numext::abs2. | 
|  | * | 
|  | * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However, | 
|  | * in that case, the expression template mechanism only occurs at the top Matrix level, | 
|  | * while derivatives are computed right away. | 
|  | * | 
|  | */ | 
|  |  | 
|  | template <typename DerivativeType> | 
|  | class AutoDiffScalar | 
|  | : public internal::auto_diff_special_op< | 
|  | DerivativeType, !internal::is_same<typename internal::traits<internal::remove_all_t<DerivativeType>>::Scalar, | 
|  | typename NumTraits<typename internal::traits< | 
|  | internal::remove_all_t<DerivativeType>>::Scalar>::Real>::value> { | 
|  | public: | 
|  | typedef internal::auto_diff_special_op< | 
|  | DerivativeType, | 
|  | !internal::is_same< | 
|  | typename internal::traits<internal::remove_all_t<DerivativeType>>::Scalar, | 
|  | typename NumTraits<typename internal::traits<internal::remove_all_t<DerivativeType>>::Scalar>::Real>::value> | 
|  | Base; | 
|  | typedef internal::remove_all_t<DerivativeType> DerType; | 
|  | typedef typename internal::traits<DerType>::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real Real; | 
|  |  | 
|  | using Base::operator+; | 
|  | using Base::operator*; | 
|  |  | 
|  | /** Default constructor without any initialization. */ | 
|  | AutoDiffScalar() {} | 
|  |  | 
|  | /** Constructs an active scalar from its \a value, | 
|  | and initializes the \a nbDer derivatives such that it corresponds to the \a derNumber -th variable */ | 
|  | AutoDiffScalar(const Scalar& value, int nbDer, int derNumber) : m_value(value), m_derivatives(DerType::Zero(nbDer)) { | 
|  | m_derivatives.coeffRef(derNumber) = Scalar(1); | 
|  | } | 
|  |  | 
|  | /** Conversion from a scalar constant to an active scalar. | 
|  | * The derivatives are set to zero. */ | 
|  | /*explicit*/ AutoDiffScalar(const Real& value) : m_value(value) { | 
|  | if (m_derivatives.size() > 0) m_derivatives.setZero(); | 
|  | } | 
|  |  | 
|  | /** Constructs an active scalar from its \a value and derivatives \a der */ | 
|  | AutoDiffScalar(const Scalar& value, const DerType& der) : m_value(value), m_derivatives(der) {} | 
|  |  | 
|  | template <typename OtherDerType> | 
|  | AutoDiffScalar( | 
|  | const AutoDiffScalar<OtherDerType>& other | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | , | 
|  | std::enable_if_t< | 
|  | internal::is_same<Scalar, typename internal::traits<internal::remove_all_t<OtherDerType>>::Scalar>::value && | 
|  | internal::is_convertible<OtherDerType, DerType>::value, | 
|  | void*> = 0 | 
|  | #endif | 
|  | ) | 
|  | : m_value(other.value()), m_derivatives(other.derivatives()) { | 
|  | } | 
|  |  | 
|  | friend std::ostream& operator<<(std::ostream& s, const AutoDiffScalar& a) { return s << a.value(); } | 
|  |  | 
|  | AutoDiffScalar(const AutoDiffScalar& other) : m_value(other.value()), m_derivatives(other.derivatives()) {} | 
|  |  | 
|  | template <typename OtherDerType> | 
|  | inline AutoDiffScalar& operator=(const AutoDiffScalar<OtherDerType>& other) { | 
|  | m_value = other.value(); | 
|  | m_derivatives = other.derivatives(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar& operator=(const AutoDiffScalar& other) { | 
|  | m_value = other.value(); | 
|  | m_derivatives = other.derivatives(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar& operator=(const Scalar& other) { | 
|  | m_value = other; | 
|  | if (m_derivatives.size() > 0) m_derivatives.setZero(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | //     inline operator const Scalar& () const { return m_value; } | 
|  | //     inline operator Scalar& () { return m_value; } | 
|  |  | 
|  | inline const Scalar& value() const { return m_value; } | 
|  | inline Scalar& value() { return m_value; } | 
|  |  | 
|  | inline const DerType& derivatives() const { return m_derivatives; } | 
|  | inline DerType& derivatives() { return m_derivatives; } | 
|  |  | 
|  | inline bool operator<(const Scalar& other) const { return m_value < other; } | 
|  | inline bool operator<=(const Scalar& other) const { return m_value <= other; } | 
|  | inline bool operator>(const Scalar& other) const { return m_value > other; } | 
|  | inline bool operator>=(const Scalar& other) const { return m_value >= other; } | 
|  | inline bool operator==(const Scalar& other) const { return m_value == other; } | 
|  | inline bool operator!=(const Scalar& other) const { return m_value != other; } | 
|  |  | 
|  | friend inline bool operator<(const Scalar& a, const AutoDiffScalar& b) { return a < b.value(); } | 
|  | friend inline bool operator<=(const Scalar& a, const AutoDiffScalar& b) { return a <= b.value(); } | 
|  | friend inline bool operator>(const Scalar& a, const AutoDiffScalar& b) { return a > b.value(); } | 
|  | friend inline bool operator>=(const Scalar& a, const AutoDiffScalar& b) { return a >= b.value(); } | 
|  | friend inline bool operator==(const Scalar& a, const AutoDiffScalar& b) { return a == b.value(); } | 
|  | friend inline bool operator!=(const Scalar& a, const AutoDiffScalar& b) { return a != b.value(); } | 
|  |  | 
|  | template <typename OtherDerType> | 
|  | inline bool operator<(const AutoDiffScalar<OtherDerType>& b) const { | 
|  | return m_value < b.value(); | 
|  | } | 
|  | template <typename OtherDerType> | 
|  | inline bool operator<=(const AutoDiffScalar<OtherDerType>& b) const { | 
|  | return m_value <= b.value(); | 
|  | } | 
|  | template <typename OtherDerType> | 
|  | inline bool operator>(const AutoDiffScalar<OtherDerType>& b) const { | 
|  | return m_value > b.value(); | 
|  | } | 
|  | template <typename OtherDerType> | 
|  | inline bool operator>=(const AutoDiffScalar<OtherDerType>& b) const { | 
|  | return m_value >= b.value(); | 
|  | } | 
|  | template <typename OtherDerType> | 
|  | inline bool operator==(const AutoDiffScalar<OtherDerType>& b) const { | 
|  | return m_value == b.value(); | 
|  | } | 
|  | template <typename OtherDerType> | 
|  | inline bool operator!=(const AutoDiffScalar<OtherDerType>& b) const { | 
|  | return m_value != b.value(); | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar<DerType&> operator+(const Scalar& other) const { | 
|  | return AutoDiffScalar<DerType&>(m_value + other, m_derivatives); | 
|  | } | 
|  |  | 
|  | friend inline AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b) { | 
|  | return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); | 
|  | } | 
|  |  | 
|  | //     inline const AutoDiffScalar<DerType&> operator+(const Real& other) const | 
|  | //     { | 
|  | //       return AutoDiffScalar<DerType&>(m_value + other, m_derivatives); | 
|  | //     } | 
|  |  | 
|  | //     friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar& b) | 
|  | //     { | 
|  | //       return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); | 
|  | //     } | 
|  |  | 
|  | inline AutoDiffScalar& operator+=(const Scalar& other) { | 
|  | value() += other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename OtherDerType> | 
|  | inline AutoDiffScalar< | 
|  | CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const DerType, const internal::remove_all_t<OtherDerType>>> | 
|  | operator+(const AutoDiffScalar<OtherDerType>& other) const { | 
|  | internal::make_coherent(m_derivatives, other.derivatives()); | 
|  | return AutoDiffScalar< | 
|  | CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const DerType, const internal::remove_all_t<OtherDerType>>>( | 
|  | m_value + other.value(), m_derivatives + other.derivatives()); | 
|  | } | 
|  |  | 
|  | template <typename OtherDerType> | 
|  | inline AutoDiffScalar& operator+=(const AutoDiffScalar<OtherDerType>& other) { | 
|  | (*this) = (*this) + other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar<DerType&> operator-(const Scalar& b) const { | 
|  | return AutoDiffScalar<DerType&>(m_value - b, m_derivatives); | 
|  | } | 
|  |  | 
|  | friend inline AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType>> operator-( | 
|  | const Scalar& a, const AutoDiffScalar& b) { | 
|  | return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType>>(a - b.value(), | 
|  | -b.derivatives()); | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar& operator-=(const Scalar& other) { | 
|  | value() -= other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename OtherDerType> | 
|  | inline AutoDiffScalar< | 
|  | CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType, const internal::remove_all_t<OtherDerType>>> | 
|  | operator-(const AutoDiffScalar<OtherDerType>& other) const { | 
|  | internal::make_coherent(m_derivatives, other.derivatives()); | 
|  | return AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType, | 
|  | const internal::remove_all_t<OtherDerType>>>( | 
|  | m_value - other.value(), m_derivatives - other.derivatives()); | 
|  | } | 
|  |  | 
|  | template <typename OtherDerType> | 
|  | inline AutoDiffScalar& operator-=(const AutoDiffScalar<OtherDerType>& other) { | 
|  | *this = *this - other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType>> operator-() const { | 
|  | return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType>>(-m_value, -m_derivatives); | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType, Scalar, product)> operator*( | 
|  | const Scalar& other) const { | 
|  | return MakeAutoDiffScalar(m_value * other, m_derivatives * other); | 
|  | } | 
|  |  | 
|  | friend inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType, Scalar, product)> operator*( | 
|  | const Scalar& other, const AutoDiffScalar& a) { | 
|  | return MakeAutoDiffScalar(a.value() * other, a.derivatives() * other); | 
|  | } | 
|  |  | 
|  | //     inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
|  | //     operator*(const Real& other) const | 
|  | //     { | 
|  | //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
|  | //         m_value * other, | 
|  | //         (m_derivatives * other)); | 
|  | //     } | 
|  | // | 
|  | //     friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
|  | //     operator*(const Real& other, const AutoDiffScalar& a) | 
|  | //     { | 
|  | //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
|  | //         a.value() * other, | 
|  | //         a.derivatives() * other); | 
|  | //     } | 
|  |  | 
|  | inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType, Scalar, product)> operator/( | 
|  | const Scalar& other) const { | 
|  | return MakeAutoDiffScalar(m_value / other, (m_derivatives * (Scalar(1) / other))); | 
|  | } | 
|  |  | 
|  | friend inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType, Scalar, product)> operator/( | 
|  | const Scalar& other, const AutoDiffScalar& a) { | 
|  | return MakeAutoDiffScalar(other / a.value(), a.derivatives() * (Scalar(-other) / (a.value() * a.value()))); | 
|  | } | 
|  |  | 
|  | //     inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
|  | //     operator/(const Real& other) const | 
|  | //     { | 
|  | //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
|  | //         m_value / other, | 
|  | //         (m_derivatives * (Real(1)/other))); | 
|  | //     } | 
|  | // | 
|  | //     friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
|  | //     operator/(const Real& other, const AutoDiffScalar& a) | 
|  | //     { | 
|  | //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
|  | //         other / a.value(), | 
|  | //         a.derivatives() * (-Real(1)/other)); | 
|  | //     } | 
|  |  | 
|  | template <typename OtherDerType> | 
|  | inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE( | 
|  | CwiseBinaryOp<internal::scalar_difference_op<Scalar> EIGEN_COMMA const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE( | 
|  | DerType, Scalar, product) EIGEN_COMMA const | 
|  | EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(internal::remove_all_t<OtherDerType>, Scalar, product)>, | 
|  | Scalar, product)> | 
|  | operator/(const AutoDiffScalar<OtherDerType>& other) const { | 
|  | internal::make_coherent(m_derivatives, other.derivatives()); | 
|  | return MakeAutoDiffScalar(m_value / other.value(), | 
|  | ((m_derivatives * other.value()) - (other.derivatives() * m_value)) * | 
|  | (Scalar(1) / (other.value() * other.value()))); | 
|  | } | 
|  |  | 
|  | template <typename OtherDerType> | 
|  | inline AutoDiffScalar<CwiseBinaryOp< | 
|  | internal::scalar_sum_op<Scalar>, const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType, Scalar, product), | 
|  | const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(internal::remove_all_t<OtherDerType>, Scalar, product)>> | 
|  | operator*(const AutoDiffScalar<OtherDerType>& other) const { | 
|  | internal::make_coherent(m_derivatives, other.derivatives()); | 
|  | return MakeAutoDiffScalar(m_value * other.value(), | 
|  | (m_derivatives * other.value()) + (other.derivatives() * m_value)); | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar& operator*=(const Scalar& other) { | 
|  | *this = *this * other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename OtherDerType> | 
|  | inline AutoDiffScalar& operator*=(const AutoDiffScalar<OtherDerType>& other) { | 
|  | *this = *this * other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar& operator/=(const Scalar& other) { | 
|  | *this = *this / other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename OtherDerType> | 
|  | inline AutoDiffScalar& operator/=(const AutoDiffScalar<OtherDerType>& other) { | 
|  | *this = *this / other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | Scalar m_value; | 
|  | DerType m_derivatives; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename DerivativeType> | 
|  | struct auto_diff_special_op<DerivativeType, true> | 
|  | //   : auto_diff_scalar_op<DerivativeType, typename NumTraits<Scalar>::Real, | 
|  | //                            is_same<Scalar,typename NumTraits<Scalar>::Real>::value> | 
|  | { | 
|  | typedef remove_all_t<DerivativeType> DerType; | 
|  | typedef typename traits<DerType>::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real Real; | 
|  |  | 
|  | //   typedef auto_diff_scalar_op<DerivativeType, typename NumTraits<Scalar>::Real, | 
|  | //                            is_same<Scalar,typename NumTraits<Scalar>::Real>::value> Base; | 
|  |  | 
|  | //   using Base::operator+; | 
|  | //   using Base::operator+=; | 
|  | //   using Base::operator-; | 
|  | //   using Base::operator-=; | 
|  | //   using Base::operator*; | 
|  | //   using Base::operator*=; | 
|  |  | 
|  | const AutoDiffScalar<DerivativeType>& derived() const { | 
|  | return *static_cast<const AutoDiffScalar<DerivativeType>*>(this); | 
|  | } | 
|  | AutoDiffScalar<DerivativeType>& derived() { return *static_cast<AutoDiffScalar<DerivativeType>*>(this); } | 
|  |  | 
|  | inline AutoDiffScalar<DerType&> operator+(const Real& other) const { | 
|  | return AutoDiffScalar<DerType&>(derived().value() + other, derived().derivatives()); | 
|  | } | 
|  |  | 
|  | friend inline AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar<DerivativeType>& b) { | 
|  | return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar<DerivativeType>& operator+=(const Real& other) { | 
|  | derived().value() += other; | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar, Real>>, DerType>::Type> operator*( | 
|  | const Real& other) const { | 
|  | return AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar, Real>>, DerType>::Type>( | 
|  | derived().value() * other, derived().derivatives() * other); | 
|  | } | 
|  |  | 
|  | friend inline AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real, Scalar>>, DerType>::Type> | 
|  | operator*(const Real& other, const AutoDiffScalar<DerivativeType>& a) { | 
|  | return AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real, Scalar>>, DerType>::Type>( | 
|  | a.value() * other, a.derivatives() * other); | 
|  | } | 
|  |  | 
|  | inline AutoDiffScalar<DerivativeType>& operator*=(const Scalar& other) { | 
|  | *this = *this * other; | 
|  | return derived(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename DerivativeType> | 
|  | struct auto_diff_special_op<DerivativeType, false> { | 
|  | void operator*() const; | 
|  | void operator-() const; | 
|  | void operator+() const; | 
|  | }; | 
|  |  | 
|  | template <typename BinOp, typename A, typename B, typename RefType> | 
|  | void make_coherent_expression(CwiseBinaryOp<BinOp, A, B> xpr, const RefType& ref) { | 
|  | make_coherent(xpr.const_cast_derived().lhs(), ref); | 
|  | make_coherent(xpr.const_cast_derived().rhs(), ref); | 
|  | } | 
|  |  | 
|  | template <typename UnaryOp, typename A, typename RefType> | 
|  | void make_coherent_expression(const CwiseUnaryOp<UnaryOp, A>& xpr, const RefType& ref) { | 
|  | make_coherent(xpr.nestedExpression().const_cast_derived(), ref); | 
|  | } | 
|  |  | 
|  | // needed for compilation only | 
|  | template <typename UnaryOp, typename A, typename RefType> | 
|  | void make_coherent_expression(const CwiseNullaryOp<UnaryOp, A>&, const RefType&) {} | 
|  |  | 
|  | template <typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B> | 
|  | struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, B> { | 
|  | typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A; | 
|  | static void run(A& a, B& b) { | 
|  | if ((A_Rows == Dynamic || A_Cols == Dynamic) && (a.size() == 0)) { | 
|  | a.resize(b.size()); | 
|  | a.setZero(); | 
|  | } else if (B::SizeAtCompileTime == Dynamic && a.size() != 0 && b.size() == 0) { | 
|  | make_coherent_expression(b, a); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename A, typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols> | 
|  | struct make_coherent_impl<A, Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols>> { | 
|  | typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B; | 
|  | static void run(A& a, B& b) { | 
|  | if ((B_Rows == Dynamic || B_Cols == Dynamic) && (b.size() == 0)) { | 
|  | b.resize(a.size()); | 
|  | b.setZero(); | 
|  | } else if (A::SizeAtCompileTime == Dynamic && b.size() != 0 && a.size() == 0) { | 
|  | make_coherent_expression(a, b); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B_Scalar, | 
|  | int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols> | 
|  | struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, | 
|  | Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols>> { | 
|  | typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A; | 
|  | typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B; | 
|  | static void run(A& a, B& b) { | 
|  | if ((A_Rows == Dynamic || A_Cols == Dynamic) && (a.size() == 0)) { | 
|  | a.resize(b.size()); | 
|  | a.setZero(); | 
|  | } else if ((B_Rows == Dynamic || B_Cols == Dynamic) && (b.size() == 0)) { | 
|  | b.resize(a.size()); | 
|  | b.setZero(); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | template <typename DerType, typename BinOp> | 
|  | struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>, typename DerType::Scalar, BinOp> { | 
|  | typedef AutoDiffScalar<DerType> ReturnType; | 
|  | }; | 
|  |  | 
|  | template <typename DerType, typename BinOp> | 
|  | struct ScalarBinaryOpTraits<typename DerType::Scalar, AutoDiffScalar<DerType>, BinOp> { | 
|  | typedef AutoDiffScalar<DerType> ReturnType; | 
|  | }; | 
|  |  | 
|  | // The following is an attempt to let Eigen's known about expression template, but that's more tricky! | 
|  |  | 
|  | // template<typename DerType, typename BinOp> | 
|  | // struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,AutoDiffScalar<DerType>, BinOp> | 
|  | // { | 
|  | //   enum { Defined = 1 }; | 
|  | //   typedef AutoDiffScalar<typename DerType::PlainObject> ReturnType; | 
|  | // }; | 
|  | // | 
|  | // template<typename DerType1,typename DerType2, typename BinOp> | 
|  | // struct ScalarBinaryOpTraits<AutoDiffScalar<DerType1>,AutoDiffScalar<DerType2>, BinOp> | 
|  | // { | 
|  | //   enum { Defined = 1 };//internal::is_same<typename DerType1::Scalar,typename DerType2::Scalar>::value }; | 
|  | //   typedef AutoDiffScalar<typename DerType1::PlainObject> ReturnType; | 
|  | // }; | 
|  |  | 
|  | #define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC, CODE)                                              \ | 
|  | template <typename DerType>                                                                        \ | 
|  | inline Eigen::AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(                               \ | 
|  | Eigen::internal::remove_all_t<DerType>,                                                        \ | 
|  | typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product)>    \ | 
|  | FUNC(const Eigen::AutoDiffScalar<DerType>& x) {                                                    \ | 
|  | using namespace Eigen;                                                                           \ | 
|  | typedef typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar Scalar; \ | 
|  | EIGEN_UNUSED_VARIABLE(sizeof(Scalar));                                                           \ | 
|  | CODE;                                                                                            \ | 
|  | } | 
|  |  | 
|  | template <typename DerType> | 
|  | struct CleanedUpDerType { | 
|  | typedef AutoDiffScalar<typename Eigen::internal::remove_all_t<DerType>::PlainObject> type; | 
|  | }; | 
|  |  | 
|  | template <typename DerType> | 
|  | inline const AutoDiffScalar<DerType>& conj(const AutoDiffScalar<DerType>& x) { | 
|  | return x; | 
|  | } | 
|  | template <typename DerType> | 
|  | inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x) { | 
|  | return x; | 
|  | } | 
|  | template <typename DerType> | 
|  | inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&) { | 
|  | return 0.; | 
|  | } | 
|  | template <typename DerType, typename T> | 
|  | inline typename CleanedUpDerType<DerType>::type(min)(const AutoDiffScalar<DerType>& x, const T& y) { | 
|  | typedef typename CleanedUpDerType<DerType>::type ADS; | 
|  | return (x <= y ? ADS(x) : ADS(y)); | 
|  | } | 
|  | template <typename DerType, typename T> | 
|  | inline typename CleanedUpDerType<DerType>::type(max)(const AutoDiffScalar<DerType>& x, const T& y) { | 
|  | typedef typename CleanedUpDerType<DerType>::type ADS; | 
|  | return (x >= y ? ADS(x) : ADS(y)); | 
|  | } | 
|  | template <typename DerType, typename T> | 
|  | inline typename CleanedUpDerType<DerType>::type(min)(const T& x, const AutoDiffScalar<DerType>& y) { | 
|  | typedef typename CleanedUpDerType<DerType>::type ADS; | 
|  | return (x < y ? ADS(x) : ADS(y)); | 
|  | } | 
|  | template <typename DerType, typename T> | 
|  | inline typename CleanedUpDerType<DerType>::type(max)(const T& x, const AutoDiffScalar<DerType>& y) { | 
|  | typedef typename CleanedUpDerType<DerType>::type ADS; | 
|  | return (x > y ? ADS(x) : ADS(y)); | 
|  | } | 
|  | template <typename DerType> | 
|  | inline | 
|  | typename CleanedUpDerType<DerType>::type(min)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) { | 
|  | return (x.value() < y.value() ? x : y); | 
|  | } | 
|  | template <typename DerType> | 
|  | inline | 
|  | typename CleanedUpDerType<DerType>::type(max)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) { | 
|  | return (x.value() >= y.value() ? x : y); | 
|  | } | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs, using std::abs; | 
|  | return Eigen::MakeAutoDiffScalar(abs(x.value()), | 
|  | x.derivatives() * (x.value() < 0 ? -1 : 1));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2, using numext::abs2; | 
|  | return Eigen::MakeAutoDiffScalar(abs2(x.value()), | 
|  | x.derivatives() * (Scalar(2) * x.value()));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt, using std::sqrt; Scalar sqrtx = sqrt(x.value()); | 
|  | return Eigen::MakeAutoDiffScalar(sqrtx, x.derivatives() * (Scalar(0.5) / sqrtx));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos, using std::cos; using std::sin; | 
|  | return Eigen::MakeAutoDiffScalar(cos(x.value()), | 
|  | x.derivatives() * (-sin(x.value())));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin, using std::sin; using std::cos; | 
|  | return Eigen::MakeAutoDiffScalar(sin(x.value()), x.derivatives() * cos(x.value()));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp, using std::exp; Scalar expx = exp(x.value()); | 
|  | return Eigen::MakeAutoDiffScalar(expx, x.derivatives() * expx);) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log, using std::log; | 
|  | return Eigen::MakeAutoDiffScalar(log(x.value()), | 
|  | x.derivatives() * (Scalar(1) / x.value()));) | 
|  |  | 
|  | template <typename DerType> | 
|  | inline Eigen::AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE( | 
|  | internal::remove_all_t<DerType>, typename internal::traits<internal::remove_all_t<DerType>>::Scalar, product)> | 
|  | pow(const Eigen::AutoDiffScalar<DerType>& x, | 
|  | const typename internal::traits<internal::remove_all_t<DerType>>::Scalar& y) { | 
|  | using namespace Eigen; | 
|  | using std::pow; | 
|  | return Eigen::MakeAutoDiffScalar(pow(x.value(), y), x.derivatives() * (y * pow(x.value(), y - 1))); | 
|  | } | 
|  |  | 
|  | template <typename DerTypeA, typename DerTypeB> | 
|  | inline AutoDiffScalar<Matrix<typename internal::traits<internal::remove_all_t<DerTypeA>>::Scalar, Dynamic, 1>> atan2( | 
|  | const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b) { | 
|  | using std::atan2; | 
|  | typedef typename internal::traits<internal::remove_all_t<DerTypeA>>::Scalar Scalar; | 
|  | typedef AutoDiffScalar<Matrix<Scalar, Dynamic, 1>> PlainADS; | 
|  | PlainADS ret; | 
|  | ret.value() = atan2(a.value(), b.value()); | 
|  |  | 
|  | Scalar squared_hypot = a.value() * a.value() + b.value() * b.value(); | 
|  |  | 
|  | // if (squared_hypot==0) the derivation is undefined and the following results in a NaN: | 
|  | ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) / squared_hypot; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan, using std::tan; using std::cos; return Eigen::MakeAutoDiffScalar( | 
|  | tan(x.value()), x.derivatives() * (Scalar(1) / numext::abs2(cos(x.value()))));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin, using std::sqrt; using std::asin; return Eigen::MakeAutoDiffScalar( | 
|  | asin(x.value()), | 
|  | x.derivatives() * (Scalar(1) / sqrt(1 - numext::abs2(x.value()))));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos, using std::sqrt; using std::acos; return Eigen::MakeAutoDiffScalar( | 
|  | acos(x.value()), | 
|  | x.derivatives() * (Scalar(-1) / sqrt(1 - numext::abs2(x.value()))));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY( | 
|  | tanh, using std::cosh; using std::tanh; | 
|  | return Eigen::MakeAutoDiffScalar(tanh(x.value()), x.derivatives() * (Scalar(1) / numext::abs2(cosh(x.value()))));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sinh, using std::sinh; using std::cosh; | 
|  | return Eigen::MakeAutoDiffScalar(sinh(x.value()), | 
|  | x.derivatives() * cosh(x.value()));) | 
|  |  | 
|  | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh, using std::sinh; using std::cosh; | 
|  | return Eigen::MakeAutoDiffScalar(cosh(x.value()), | 
|  | x.derivatives() * sinh(x.value()));) | 
|  |  | 
|  | #undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY | 
|  |  | 
|  | template <typename DerType> | 
|  | struct NumTraits<AutoDiffScalar<DerType>> | 
|  | : NumTraits<typename NumTraits<typename internal::remove_all_t<DerType>::Scalar>::Real> { | 
|  | typedef internal::remove_all_t<DerType> DerTypeCleaned; | 
|  | typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerTypeCleaned::Scalar>::Real, | 
|  | DerTypeCleaned::RowsAtCompileTime, DerTypeCleaned::ColsAtCompileTime, 0, | 
|  | DerTypeCleaned::MaxRowsAtCompileTime, DerTypeCleaned::MaxColsAtCompileTime>> | 
|  | Real; | 
|  | typedef AutoDiffScalar<DerType> NonInteger; | 
|  | typedef AutoDiffScalar<DerType> Nested; | 
|  | typedef typename NumTraits<typename DerTypeCleaned::Scalar>::Literal Literal; | 
|  | enum { RequireInitialization = 1 }; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  | template <typename DerivativeType> | 
|  | struct is_identically_zero_impl<AutoDiffScalar<DerivativeType>> { | 
|  | static inline bool run(const AutoDiffScalar<DerivativeType>& s) { | 
|  | const DerivativeType& derivatives = s.derivatives(); | 
|  | for (int i = 0; i < derivatives.size(); ++i) { | 
|  | if (!numext::is_exactly_zero(derivatives[i])) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return numext::is_exactly_zero(s.value()); | 
|  | } | 
|  | }; | 
|  | }  // namespace internal | 
|  | }  // namespace Eigen | 
|  |  | 
|  | namespace std { | 
|  |  | 
|  | template <typename T> | 
|  | class numeric_limits<Eigen::AutoDiffScalar<T>> : public numeric_limits<typename T::Scalar> {}; | 
|  |  | 
|  | template <typename T> | 
|  | class numeric_limits<Eigen::AutoDiffScalar<T&>> : public numeric_limits<typename T::Scalar> {}; | 
|  |  | 
|  | }  // namespace std | 
|  |  | 
|  | #endif  // EIGEN_AUTODIFF_SCALAR_H |