|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_POLYNOMIAL_UTILS_H | 
|  | #define EIGEN_POLYNOMIAL_UTILS_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \ingroup Polynomials_Module | 
|  | * \returns the evaluation of the polynomial at x using Horner algorithm. | 
|  | * | 
|  | * \param[in] poly : the vector of coefficients of the polynomial ordered | 
|  | *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial | 
|  | *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$. | 
|  | * \param[in] x : the value to evaluate the polynomial at. | 
|  | * | 
|  | * \note for stability: | 
|  | *   \f$ |x| \le 1 \f$ | 
|  | */ | 
|  | template <typename Polynomials, typename T> | 
|  | inline T poly_eval_horner(const Polynomials& poly, const T& x) { | 
|  | T val = poly[poly.size() - 1]; | 
|  | for (DenseIndex i = poly.size() - 2; i >= 0; --i) { | 
|  | val = val * x + poly[i]; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /** \ingroup Polynomials_Module | 
|  | * \returns the evaluation of the polynomial at x using stabilized Horner algorithm. | 
|  | * | 
|  | * \param[in] poly : the vector of coefficients of the polynomial ordered | 
|  | *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial | 
|  | *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$. | 
|  | * \param[in] x : the value to evaluate the polynomial at. | 
|  | */ | 
|  | template <typename Polynomials, typename T> | 
|  | inline T poly_eval(const Polynomials& poly, const T& x) { | 
|  | typedef typename NumTraits<T>::Real Real; | 
|  |  | 
|  | if (numext::abs2(x) <= Real(1)) { | 
|  | return poly_eval_horner(poly, x); | 
|  | } else { | 
|  | T val = poly[0]; | 
|  | T inv_x = T(1) / x; | 
|  | for (DenseIndex i = 1; i < poly.size(); ++i) { | 
|  | val = val * inv_x + poly[i]; | 
|  | } | 
|  |  | 
|  | return numext::pow(x, (T)(poly.size() - 1)) * val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \ingroup Polynomials_Module | 
|  | * \returns a maximum bound for the absolute value of any root of the polynomial. | 
|  | * | 
|  | * \param[in] poly : the vector of coefficients of the polynomial ordered | 
|  | *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial | 
|  | *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$. | 
|  | * | 
|  | *  \pre | 
|  | *   the leading coefficient of the input polynomial poly must be non zero | 
|  | */ | 
|  | template <typename Polynomial> | 
|  | inline typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound(const Polynomial& poly) { | 
|  | using std::abs; | 
|  | typedef typename Polynomial::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real Real; | 
|  |  | 
|  | eigen_assert(Scalar(0) != poly[poly.size() - 1]); | 
|  | const Scalar inv_leading_coeff = Scalar(1) / poly[poly.size() - 1]; | 
|  | Real cb(0); | 
|  |  | 
|  | for (DenseIndex i = 0; i < poly.size() - 1; ++i) { | 
|  | cb += abs(poly[i] * inv_leading_coeff); | 
|  | } | 
|  | return cb + Real(1); | 
|  | } | 
|  |  | 
|  | /** \ingroup Polynomials_Module | 
|  | * \returns a minimum bound for the absolute value of any non zero root of the polynomial. | 
|  | * \param[in] poly : the vector of coefficients of the polynomial ordered | 
|  | *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial | 
|  | *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$. | 
|  | */ | 
|  | template <typename Polynomial> | 
|  | inline typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound(const Polynomial& poly) { | 
|  | using std::abs; | 
|  | typedef typename Polynomial::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real Real; | 
|  |  | 
|  | DenseIndex i = 0; | 
|  | while (i < poly.size() - 1 && Scalar(0) == poly(i)) { | 
|  | ++i; | 
|  | } | 
|  | if (poly.size() - 1 == i) { | 
|  | return Real(1); | 
|  | } | 
|  |  | 
|  | const Scalar inv_min_coeff = Scalar(1) / poly[i]; | 
|  | Real cb(1); | 
|  | for (DenseIndex j = i + 1; j < poly.size(); ++j) { | 
|  | cb += abs(poly[j] * inv_min_coeff); | 
|  | } | 
|  | return Real(1) / cb; | 
|  | } | 
|  |  | 
|  | /** \ingroup Polynomials_Module | 
|  | * Given the roots of a polynomial compute the coefficients in the | 
|  | * monomial basis of the monic polynomial with same roots and minimal degree. | 
|  | * If RootVector is a vector of complexes, Polynomial should also be a vector | 
|  | * of complexes. | 
|  | * \param[in] rv : a vector containing the roots of a polynomial. | 
|  | * \param[out] poly : the vector of coefficients of the polynomial ordered | 
|  | *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial | 
|  | *  e.g. \f$ 3 + x^2 \f$ is stored as a vector \f$ [ 3, 0, 1 ] \f$. | 
|  | */ | 
|  | template <typename RootVector, typename Polynomial> | 
|  | void roots_to_monicPolynomial(const RootVector& rv, Polynomial& poly) { | 
|  | typedef typename Polynomial::Scalar Scalar; | 
|  |  | 
|  | poly.setZero(rv.size() + 1); | 
|  | poly[0] = -rv[0]; | 
|  | poly[1] = Scalar(1); | 
|  | for (DenseIndex i = 1; i < rv.size(); ++i) { | 
|  | for (DenseIndex j = i + 1; j > 0; --j) { | 
|  | poly[j] = poly[j - 1] - rv[i] * poly[j]; | 
|  | } | 
|  | poly[0] = -rv[i] * poly[0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_POLYNOMIAL_UTILS_H |