|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_SPLINE_H | 
|  | #define EIGEN_SPLINE_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | #include "SplineFwd.h" | 
|  |  | 
|  | namespace Eigen { | 
|  | /** | 
|  | * \ingroup Splines_Module | 
|  | * \class Spline | 
|  | * \brief A class representing multi-dimensional spline curves. | 
|  | * | 
|  | * The class represents B-splines with non-uniform knot vectors. Each control | 
|  | * point of the B-spline is associated with a basis function | 
|  | * \f{align*} | 
|  | *   C(u) & = \sum_{i=0}^{n}N_{i,p}(u)P_i | 
|  | * \f} | 
|  | * | 
|  | * \tparam Scalar_ The underlying data type (typically float or double) | 
|  | * \tparam Dim_ The curve dimension (e.g. 2 or 3) | 
|  | * \tparam Degree_ Per default set to Dynamic; could be set to the actual desired | 
|  | *                degree for optimization purposes (would result in stack allocation | 
|  | *                of several temporary variables). | 
|  | **/ | 
|  | template <typename Scalar_, int Dim_, int Degree_> | 
|  | class Spline { | 
|  | public: | 
|  | typedef Scalar_ Scalar; /*!< The spline curve's scalar type. */ | 
|  | enum { Dimension = Dim_ /*!< The spline curve's dimension. */ }; | 
|  | enum { Degree = Degree_ /*!< The spline curve's degree. */ }; | 
|  |  | 
|  | /** \brief The point type the spline is representing. */ | 
|  | typedef typename SplineTraits<Spline>::PointType PointType; | 
|  |  | 
|  | /** \brief The data type used to store knot vectors. */ | 
|  | typedef typename SplineTraits<Spline>::KnotVectorType KnotVectorType; | 
|  |  | 
|  | /** \brief The data type used to store parameter vectors. */ | 
|  | typedef typename SplineTraits<Spline>::ParameterVectorType ParameterVectorType; | 
|  |  | 
|  | /** \brief The data type used to store non-zero basis functions. */ | 
|  | typedef typename SplineTraits<Spline>::BasisVectorType BasisVectorType; | 
|  |  | 
|  | /** \brief The data type used to store the values of the basis function derivatives. */ | 
|  | typedef typename SplineTraits<Spline>::BasisDerivativeType BasisDerivativeType; | 
|  |  | 
|  | /** \brief The data type representing the spline's control points. */ | 
|  | typedef typename SplineTraits<Spline>::ControlPointVectorType ControlPointVectorType; | 
|  |  | 
|  | /** | 
|  | * \brief Creates a (constant) zero spline. | 
|  | * For Splines with dynamic degree, the resulting degree will be 0. | 
|  | **/ | 
|  | Spline() | 
|  | : m_knots(1, (Degree == Dynamic ? 2 : 2 * Degree + 2)), | 
|  | m_ctrls(ControlPointVectorType::Zero(Dimension, (Degree == Dynamic ? 1 : Degree + 1))) { | 
|  | // in theory this code can go to the initializer list but it will get pretty | 
|  | // much unreadable ... | 
|  | enum { MinDegree = (Degree == Dynamic ? 0 : Degree) }; | 
|  | m_knots.template segment<MinDegree + 1>(0) = Array<Scalar, 1, MinDegree + 1>::Zero(); | 
|  | m_knots.template segment<MinDegree + 1>(MinDegree + 1) = Array<Scalar, 1, MinDegree + 1>::Ones(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * \brief Creates a spline from a knot vector and control points. | 
|  | * \param knots The spline's knot vector. | 
|  | * \param ctrls The spline's control point vector. | 
|  | **/ | 
|  | template <typename OtherVectorType, typename OtherArrayType> | 
|  | Spline(const OtherVectorType& knots, const OtherArrayType& ctrls) : m_knots(knots), m_ctrls(ctrls) {} | 
|  |  | 
|  | /** | 
|  | * \brief Copy constructor for splines. | 
|  | * \param spline The input spline. | 
|  | **/ | 
|  | template <int OtherDegree> | 
|  | Spline(const Spline<Scalar, Dimension, OtherDegree>& spline) : m_knots(spline.knots()), m_ctrls(spline.ctrls()) {} | 
|  |  | 
|  | /** | 
|  | * \brief Returns the knots of the underlying spline. | 
|  | **/ | 
|  | const KnotVectorType& knots() const { return m_knots; } | 
|  |  | 
|  | /** | 
|  | * \brief Returns the ctrls of the underlying spline. | 
|  | **/ | 
|  | const ControlPointVectorType& ctrls() const { return m_ctrls; } | 
|  |  | 
|  | /** | 
|  | * \brief Returns the spline value at a given site \f$u\f$. | 
|  | * | 
|  | * The function returns | 
|  | * \f{align*} | 
|  | *   C(u) & = \sum_{i=0}^{n}N_{i,p}P_i | 
|  | * \f} | 
|  | * | 
|  | * \param u Parameter \f$u \in [0;1]\f$ at which the spline is evaluated. | 
|  | * \return The spline value at the given location \f$u\f$. | 
|  | **/ | 
|  | PointType operator()(Scalar u) const; | 
|  |  | 
|  | /** | 
|  | * \brief Evaluation of spline derivatives of up-to given order. | 
|  | * | 
|  | * The function returns | 
|  | * \f{align*} | 
|  | *   \frac{d^i}{du^i}C(u) & = \sum_{i=0}^{n} \frac{d^i}{du^i} N_{i,p}(u)P_i | 
|  | * \f} | 
|  | * for i ranging between 0 and order. | 
|  | * | 
|  | * \param u Parameter \f$u \in [0;1]\f$ at which the spline derivative is evaluated. | 
|  | * \param order The order up to which the derivatives are computed. | 
|  | **/ | 
|  | typename SplineTraits<Spline>::DerivativeType derivatives(Scalar u, DenseIndex order) const; | 
|  |  | 
|  | /** | 
|  | * \copydoc Spline::derivatives | 
|  | * Using the template version of this function is more efficieent since | 
|  | * temporary objects are allocated on the stack whenever this is possible. | 
|  | **/ | 
|  | template <int DerivativeOrder> | 
|  | typename SplineTraits<Spline, DerivativeOrder>::DerivativeType derivatives(Scalar u, | 
|  | DenseIndex order = DerivativeOrder) const; | 
|  |  | 
|  | /** | 
|  | * \brief Computes the non-zero basis functions at the given site. | 
|  | * | 
|  | * Splines have local support and a point from their image is defined | 
|  | * by exactly \f$p+1\f$ control points \f$P_i\f$ where \f$p\f$ is the | 
|  | * spline degree. | 
|  | * | 
|  | * This function computes the \f$p+1\f$ non-zero basis function values | 
|  | * for a given parameter value \f$u\f$. It returns | 
|  | * \f{align*}{ | 
|  | *   N_{i,p}(u), \hdots, N_{i+p+1,p}(u) | 
|  | * \f} | 
|  | * | 
|  | * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis functions | 
|  | *          are computed. | 
|  | **/ | 
|  | typename SplineTraits<Spline>::BasisVectorType basisFunctions(Scalar u) const; | 
|  |  | 
|  | /** | 
|  | * \brief Computes the non-zero spline basis function derivatives up to given order. | 
|  | * | 
|  | * The function computes | 
|  | * \f{align*}{ | 
|  | *   \frac{d^i}{du^i} N_{i,p}(u), \hdots, \frac{d^i}{du^i} N_{i+p+1,p}(u) | 
|  | * \f} | 
|  | * with i ranging from 0 up to the specified order. | 
|  | * | 
|  | * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis function | 
|  | *          derivatives are computed. | 
|  | * \param order The order up to which the basis function derivatives are computes. | 
|  | **/ | 
|  | typename SplineTraits<Spline>::BasisDerivativeType basisFunctionDerivatives(Scalar u, DenseIndex order) const; | 
|  |  | 
|  | /** | 
|  | * \copydoc Spline::basisFunctionDerivatives | 
|  | * Using the template version of this function is more efficieent since | 
|  | * temporary objects are allocated on the stack whenever this is possible. | 
|  | **/ | 
|  | template <int DerivativeOrder> | 
|  | typename SplineTraits<Spline, DerivativeOrder>::BasisDerivativeType basisFunctionDerivatives( | 
|  | Scalar u, DenseIndex order = DerivativeOrder) const; | 
|  |  | 
|  | /** | 
|  | * \brief Returns the spline degree. | 
|  | **/ | 
|  | DenseIndex degree() const; | 
|  |  | 
|  | /** | 
|  | * \brief Returns the span within the knot vector in which u is falling. | 
|  | * \param u The site for which the span is determined. | 
|  | **/ | 
|  | DenseIndex span(Scalar u) const; | 
|  |  | 
|  | /** | 
|  | * \brief Computes the span within the provided knot vector in which u is falling. | 
|  | **/ | 
|  | static DenseIndex Span(typename SplineTraits<Spline>::Scalar u, DenseIndex degree, | 
|  | const typename SplineTraits<Spline>::KnotVectorType& knots); | 
|  |  | 
|  | /** | 
|  | * \brief Returns the spline's non-zero basis functions. | 
|  | * | 
|  | * The function computes and returns | 
|  | * \f{align*}{ | 
|  | *   N_{i,p}(u), \hdots, N_{i+p+1,p}(u) | 
|  | * \f} | 
|  | * | 
|  | * \param u The site at which the basis functions are computed. | 
|  | * \param degree The degree of the underlying spline. | 
|  | * \param knots The underlying spline's knot vector. | 
|  | **/ | 
|  | static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType& knots); | 
|  |  | 
|  | /** | 
|  | * \copydoc Spline::basisFunctionDerivatives | 
|  | * \param degree The degree of the underlying spline | 
|  | * \param knots The underlying spline's knot vector. | 
|  | **/ | 
|  | static BasisDerivativeType BasisFunctionDerivatives(const Scalar u, const DenseIndex order, const DenseIndex degree, | 
|  | const KnotVectorType& knots); | 
|  |  | 
|  | private: | 
|  | KnotVectorType m_knots;         /*!< Knot vector. */ | 
|  | ControlPointVectorType m_ctrls; /*!< Control points. */ | 
|  |  | 
|  | template <typename DerivativeType> | 
|  | static void BasisFunctionDerivativesImpl(const typename Spline<Scalar_, Dim_, Degree_>::Scalar u, | 
|  | const DenseIndex order, const DenseIndex p, | 
|  | const typename Spline<Scalar_, Dim_, Degree_>::KnotVectorType& U, | 
|  | DerivativeType& N_); | 
|  | }; | 
|  |  | 
|  | template <typename Scalar_, int Dim_, int Degree_> | 
|  | DenseIndex Spline<Scalar_, Dim_, Degree_>::Span( | 
|  | typename SplineTraits<Spline<Scalar_, Dim_, Degree_> >::Scalar u, DenseIndex degree, | 
|  | const typename SplineTraits<Spline<Scalar_, Dim_, Degree_> >::KnotVectorType& knots) { | 
|  | // Piegl & Tiller, "The NURBS Book", A2.1 (p. 68) | 
|  | if (u <= knots(0)) return degree; | 
|  | const Scalar* pos = std::upper_bound(knots.data() + degree - 1, knots.data() + knots.size() - degree - 1, u); | 
|  | return static_cast<DenseIndex>(std::distance(knots.data(), pos) - 1); | 
|  | } | 
|  |  | 
|  | template <typename Scalar_, int Dim_, int Degree_> | 
|  | typename Spline<Scalar_, Dim_, Degree_>::BasisVectorType Spline<Scalar_, Dim_, Degree_>::BasisFunctions( | 
|  | typename Spline<Scalar_, Dim_, Degree_>::Scalar u, DenseIndex degree, | 
|  | const typename Spline<Scalar_, Dim_, Degree_>::KnotVectorType& knots) { | 
|  | const DenseIndex p = degree; | 
|  | const DenseIndex i = Spline::Span(u, degree, knots); | 
|  |  | 
|  | const KnotVectorType& U = knots; | 
|  |  | 
|  | BasisVectorType left(p + 1); | 
|  | left(0) = Scalar(0); | 
|  | BasisVectorType right(p + 1); | 
|  | right(0) = Scalar(0); | 
|  |  | 
|  | VectorBlock<BasisVectorType, Degree>(left, 1, p) = | 
|  | u - VectorBlock<const KnotVectorType, Degree>(U, i + 1 - p, p).reverse(); | 
|  | VectorBlock<BasisVectorType, Degree>(right, 1, p) = VectorBlock<const KnotVectorType, Degree>(U, i + 1, p) - u; | 
|  |  | 
|  | BasisVectorType N(1, p + 1); | 
|  | N(0) = Scalar(1); | 
|  | for (DenseIndex j = 1; j <= p; ++j) { | 
|  | Scalar saved = Scalar(0); | 
|  | for (DenseIndex r = 0; r < j; r++) { | 
|  | const Scalar tmp = N(r) / (right(r + 1) + left(j - r)); | 
|  | N[r] = saved + right(r + 1) * tmp; | 
|  | saved = left(j - r) * tmp; | 
|  | } | 
|  | N(j) = saved; | 
|  | } | 
|  | return N; | 
|  | } | 
|  |  | 
|  | template <typename Scalar_, int Dim_, int Degree_> | 
|  | DenseIndex Spline<Scalar_, Dim_, Degree_>::degree() const { | 
|  | if (Degree_ == Dynamic) | 
|  | return m_knots.size() - m_ctrls.cols() - 1; | 
|  | else | 
|  | return Degree_; | 
|  | } | 
|  |  | 
|  | template <typename Scalar_, int Dim_, int Degree_> | 
|  | DenseIndex Spline<Scalar_, Dim_, Degree_>::span(Scalar u) const { | 
|  | return Spline::Span(u, degree(), knots()); | 
|  | } | 
|  |  | 
|  | template <typename Scalar_, int Dim_, int Degree_> | 
|  | typename Spline<Scalar_, Dim_, Degree_>::PointType Spline<Scalar_, Dim_, Degree_>::operator()(Scalar u) const { | 
|  | enum { Order = SplineTraits<Spline>::OrderAtCompileTime }; | 
|  |  | 
|  | const DenseIndex span = this->span(u); | 
|  | const DenseIndex p = degree(); | 
|  | const BasisVectorType basis_funcs = basisFunctions(u); | 
|  |  | 
|  | const Replicate<BasisVectorType, Dimension, 1> ctrl_weights(basis_funcs); | 
|  | const Block<const ControlPointVectorType, Dimension, Order> ctrl_pts(ctrls(), 0, span - p, Dimension, p + 1); | 
|  | return (ctrl_weights * ctrl_pts).rowwise().sum(); | 
|  | } | 
|  |  | 
|  | /* --------------------------------------------------------------------------------------------- */ | 
|  |  | 
|  | template <typename SplineType, typename DerivativeType> | 
|  | void derivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& der) { | 
|  | enum { Dimension = SplineTraits<SplineType>::Dimension }; | 
|  | enum { Order = SplineTraits<SplineType>::OrderAtCompileTime }; | 
|  | enum { DerivativeOrder = DerivativeType::ColsAtCompileTime }; | 
|  |  | 
|  | typedef typename SplineTraits<SplineType>::ControlPointVectorType ControlPointVectorType; | 
|  | typedef typename SplineTraits<SplineType, DerivativeOrder>::BasisDerivativeType BasisDerivativeType; | 
|  | typedef typename BasisDerivativeType::ConstRowXpr BasisDerivativeRowXpr; | 
|  |  | 
|  | const DenseIndex p = spline.degree(); | 
|  | const DenseIndex span = spline.span(u); | 
|  |  | 
|  | const DenseIndex n = (std::min)(p, order); | 
|  |  | 
|  | der.resize(Dimension, n + 1); | 
|  |  | 
|  | // Retrieve the basis function derivatives up to the desired order... | 
|  | const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u, n + 1); | 
|  |  | 
|  | // ... and perform the linear combinations of the control points. | 
|  | for (DenseIndex der_order = 0; der_order < n + 1; ++der_order) { | 
|  | const Replicate<BasisDerivativeRowXpr, Dimension, 1> ctrl_weights(basis_func_ders.row(der_order)); | 
|  | const Block<const ControlPointVectorType, Dimension, Order> ctrl_pts(spline.ctrls(), 0, span - p, Dimension, p + 1); | 
|  | der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar_, int Dim_, int Degree_> | 
|  | typename SplineTraits<Spline<Scalar_, Dim_, Degree_> >::DerivativeType Spline<Scalar_, Dim_, Degree_>::derivatives( | 
|  | Scalar u, DenseIndex order) const { | 
|  | typename SplineTraits<Spline>::DerivativeType res; | 
|  | derivativesImpl(*this, u, order, res); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template <typename Scalar_, int Dim_, int Degree_> | 
|  | template <int DerivativeOrder> | 
|  | typename SplineTraits<Spline<Scalar_, Dim_, Degree_>, DerivativeOrder>::DerivativeType | 
|  | Spline<Scalar_, Dim_, Degree_>::derivatives(Scalar u, DenseIndex order) const { | 
|  | typename SplineTraits<Spline, DerivativeOrder>::DerivativeType res; | 
|  | derivativesImpl(*this, u, order, res); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template <typename Scalar_, int Dim_, int Degree_> | 
|  | typename SplineTraits<Spline<Scalar_, Dim_, Degree_> >::BasisVectorType Spline<Scalar_, Dim_, Degree_>::basisFunctions( | 
|  | Scalar u) const { | 
|  | return Spline::BasisFunctions(u, degree(), knots()); | 
|  | } | 
|  |  | 
|  | /* --------------------------------------------------------------------------------------------- */ | 
|  |  | 
|  | template <typename Scalar_, int Dim_, int Degree_> | 
|  | template <typename DerivativeType> | 
|  | void Spline<Scalar_, Dim_, Degree_>::BasisFunctionDerivativesImpl( | 
|  | const typename Spline<Scalar_, Dim_, Degree_>::Scalar u, const DenseIndex order, const DenseIndex p, | 
|  | const typename Spline<Scalar_, Dim_, Degree_>::KnotVectorType& U, DerivativeType& N_) { | 
|  | typedef Spline<Scalar_, Dim_, Degree_> SplineType; | 
|  | enum { Order = SplineTraits<SplineType>::OrderAtCompileTime }; | 
|  |  | 
|  | const DenseIndex span = SplineType::Span(u, p, U); | 
|  |  | 
|  | const DenseIndex n = (std::min)(p, order); | 
|  |  | 
|  | N_.resize(n + 1, p + 1); | 
|  |  | 
|  | BasisVectorType left = BasisVectorType::Zero(p + 1); | 
|  | BasisVectorType right = BasisVectorType::Zero(p + 1); | 
|  |  | 
|  | Matrix<Scalar, Order, Order> ndu(p + 1, p + 1); | 
|  |  | 
|  | Scalar saved, temp;  // FIXME These were double instead of Scalar. Was there a reason for that? | 
|  |  | 
|  | ndu(0, 0) = 1.0; | 
|  |  | 
|  | DenseIndex j; | 
|  | for (j = 1; j <= p; ++j) { | 
|  | left[j] = u - U[span + 1 - j]; | 
|  | right[j] = U[span + j] - u; | 
|  | saved = 0.0; | 
|  |  | 
|  | for (DenseIndex r = 0; r < j; ++r) { | 
|  | /* Lower triangle */ | 
|  | ndu(j, r) = right[r + 1] + left[j - r]; | 
|  | temp = ndu(r, j - 1) / ndu(j, r); | 
|  | /* Upper triangle */ | 
|  | ndu(r, j) = static_cast<Scalar>(saved + right[r + 1] * temp); | 
|  | saved = left[j - r] * temp; | 
|  | } | 
|  |  | 
|  | ndu(j, j) = static_cast<Scalar>(saved); | 
|  | } | 
|  |  | 
|  | for (j = p; j >= 0; --j) N_(0, j) = ndu(j, p); | 
|  |  | 
|  | // Compute the derivatives | 
|  | DerivativeType a(n + 1, p + 1); | 
|  | DenseIndex r = 0; | 
|  | for (; r <= p; ++r) { | 
|  | DenseIndex s1, s2; | 
|  | s1 = 0; | 
|  | s2 = 1;  // alternate rows in array a | 
|  | a(0, 0) = 1.0; | 
|  |  | 
|  | // Compute the k-th derivative | 
|  | for (DenseIndex k = 1; k <= static_cast<DenseIndex>(n); ++k) { | 
|  | Scalar d = 0.0; | 
|  | DenseIndex rk, pk, j1, j2; | 
|  | rk = r - k; | 
|  | pk = p - k; | 
|  |  | 
|  | if (r >= k) { | 
|  | a(s2, 0) = a(s1, 0) / ndu(pk + 1, rk); | 
|  | d = a(s2, 0) * ndu(rk, pk); | 
|  | } | 
|  |  | 
|  | if (rk >= -1) | 
|  | j1 = 1; | 
|  | else | 
|  | j1 = -rk; | 
|  |  | 
|  | if (r - 1 <= pk) | 
|  | j2 = k - 1; | 
|  | else | 
|  | j2 = p - r; | 
|  |  | 
|  | for (j = j1; j <= j2; ++j) { | 
|  | a(s2, j) = (a(s1, j) - a(s1, j - 1)) / ndu(pk + 1, rk + j); | 
|  | d += a(s2, j) * ndu(rk + j, pk); | 
|  | } | 
|  |  | 
|  | if (r <= pk) { | 
|  | a(s2, k) = -a(s1, k - 1) / ndu(pk + 1, r); | 
|  | d += a(s2, k) * ndu(r, pk); | 
|  | } | 
|  |  | 
|  | N_(k, r) = static_cast<Scalar>(d); | 
|  | j = s1; | 
|  | s1 = s2; | 
|  | s2 = j;  // Switch rows | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Multiply through by the correct factors */ | 
|  | /* (Eq. [2.9])                             */ | 
|  | r = p; | 
|  | for (DenseIndex k = 1; k <= static_cast<DenseIndex>(n); ++k) { | 
|  | for (j = p; j >= 0; --j) N_(k, j) *= r; | 
|  | r *= p - k; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar_, int Dim_, int Degree_> | 
|  | typename SplineTraits<Spline<Scalar_, Dim_, Degree_> >::BasisDerivativeType | 
|  | Spline<Scalar_, Dim_, Degree_>::basisFunctionDerivatives(Scalar u, DenseIndex order) const { | 
|  | typename SplineTraits<Spline<Scalar_, Dim_, Degree_> >::BasisDerivativeType der; | 
|  | BasisFunctionDerivativesImpl(u, order, degree(), knots(), der); | 
|  | return der; | 
|  | } | 
|  |  | 
|  | template <typename Scalar_, int Dim_, int Degree_> | 
|  | template <int DerivativeOrder> | 
|  | typename SplineTraits<Spline<Scalar_, Dim_, Degree_>, DerivativeOrder>::BasisDerivativeType | 
|  | Spline<Scalar_, Dim_, Degree_>::basisFunctionDerivatives(Scalar u, DenseIndex order) const { | 
|  | typename SplineTraits<Spline<Scalar_, Dim_, Degree_>, DerivativeOrder>::BasisDerivativeType der; | 
|  | BasisFunctionDerivativesImpl(u, order, degree(), knots(), der); | 
|  | return der; | 
|  | } | 
|  |  | 
|  | template <typename Scalar_, int Dim_, int Degree_> | 
|  | typename SplineTraits<Spline<Scalar_, Dim_, Degree_> >::BasisDerivativeType | 
|  | Spline<Scalar_, Dim_, Degree_>::BasisFunctionDerivatives( | 
|  | const typename Spline<Scalar_, Dim_, Degree_>::Scalar u, const DenseIndex order, const DenseIndex degree, | 
|  | const typename Spline<Scalar_, Dim_, Degree_>::KnotVectorType& knots) { | 
|  | typename SplineTraits<Spline>::BasisDerivativeType der; | 
|  | BasisFunctionDerivativesImpl(u, order, degree, knots, der); | 
|  | return der; | 
|  | } | 
|  | }  // namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_SPLINE_H |