|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2017 Gagan Goel <gagan.nith@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | #include <Eigen/CXX11/Tensor> | 
|  |  | 
|  | using Eigen::array; | 
|  | using Eigen::Tensor; | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_0D_trace() { | 
|  | Tensor<float, 0, DataLayout> tensor; | 
|  | tensor.setRandom(); | 
|  | array<ptrdiff_t, 0> dims; | 
|  | Tensor<float, 0, DataLayout> result = tensor.trace(dims); | 
|  | VERIFY_IS_EQUAL(result(), tensor()); | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_all_dimensions_trace() { | 
|  | Tensor<float, 3, DataLayout> tensor1(5, 5, 5); | 
|  | tensor1.setRandom(); | 
|  | Tensor<float, 0, DataLayout> result1 = tensor1.trace(); | 
|  | VERIFY_IS_EQUAL(result1.rank(), 0); | 
|  | float sum = 0.0f; | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | sum += tensor1(i, i, i); | 
|  | } | 
|  | VERIFY_IS_EQUAL(result1(), sum); | 
|  |  | 
|  | Tensor<float, 5, DataLayout> tensor2(7, 7, 7, 7, 7); | 
|  | tensor2.setRandom(); | 
|  | array<ptrdiff_t, 5> dims = {{2, 1, 0, 3, 4}}; | 
|  | Tensor<float, 0, DataLayout> result2 = tensor2.trace(dims); | 
|  | VERIFY_IS_EQUAL(result2.rank(), 0); | 
|  | sum = 0.0f; | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | sum += tensor2(i, i, i, i, i); | 
|  | } | 
|  | VERIFY_IS_EQUAL(result2(), sum); | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_simple_trace() { | 
|  | Tensor<float, 3, DataLayout> tensor1(3, 5, 3); | 
|  | tensor1.setRandom(); | 
|  | array<ptrdiff_t, 2> dims1 = {{0, 2}}; | 
|  | Tensor<float, 1, DataLayout> result1 = tensor1.trace(dims1); | 
|  | VERIFY_IS_EQUAL(result1.rank(), 1); | 
|  | VERIFY_IS_EQUAL(result1.dimension(0), 5); | 
|  | float sum = 0.0f; | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | sum = 0.0f; | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | sum += tensor1(j, i, j); | 
|  | } | 
|  | VERIFY_IS_EQUAL(result1(i), sum); | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> tensor2(5, 5, 7, 7); | 
|  | tensor2.setRandom(); | 
|  | array<ptrdiff_t, 2> dims2 = {{2, 3}}; | 
|  | Tensor<float, 2, DataLayout> result2 = tensor2.trace(dims2); | 
|  | VERIFY_IS_EQUAL(result2.rank(), 2); | 
|  | VERIFY_IS_EQUAL(result2.dimension(0), 5); | 
|  | VERIFY_IS_EQUAL(result2.dimension(1), 5); | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | for (int j = 0; j < 5; ++j) { | 
|  | sum = 0.0f; | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | sum += tensor2(i, j, k, k); | 
|  | } | 
|  | VERIFY_IS_EQUAL(result2(i, j), sum); | 
|  | } | 
|  | } | 
|  |  | 
|  | array<ptrdiff_t, 2> dims3 = {{1, 0}}; | 
|  | Tensor<float, 2, DataLayout> result3 = tensor2.trace(dims3); | 
|  | VERIFY_IS_EQUAL(result3.rank(), 2); | 
|  | VERIFY_IS_EQUAL(result3.dimension(0), 7); | 
|  | VERIFY_IS_EQUAL(result3.dimension(1), 7); | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | for (int j = 0; j < 7; ++j) { | 
|  | sum = 0.0f; | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | sum += tensor2(k, k, i, j); | 
|  | } | 
|  | VERIFY_IS_EQUAL(result3(i, j), sum); | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 5, DataLayout> tensor3(3, 7, 3, 7, 3); | 
|  | tensor3.setRandom(); | 
|  | array<ptrdiff_t, 3> dims4 = {{0, 2, 4}}; | 
|  | Tensor<float, 2, DataLayout> result4 = tensor3.trace(dims4); | 
|  | VERIFY_IS_EQUAL(result4.rank(), 2); | 
|  | VERIFY_IS_EQUAL(result4.dimension(0), 7); | 
|  | VERIFY_IS_EQUAL(result4.dimension(1), 7); | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | for (int j = 0; j < 7; ++j) { | 
|  | sum = 0.0f; | 
|  | for (int k = 0; k < 3; ++k) { | 
|  | sum += tensor3(k, i, k, j, k); | 
|  | } | 
|  | VERIFY_IS_EQUAL(result4(i, j), sum); | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 5, DataLayout> tensor4(3, 7, 4, 7, 5); | 
|  | tensor4.setRandom(); | 
|  | array<ptrdiff_t, 2> dims5 = {{1, 3}}; | 
|  | Tensor<float, 3, DataLayout> result5 = tensor4.trace(dims5); | 
|  | VERIFY_IS_EQUAL(result5.rank(), 3); | 
|  | VERIFY_IS_EQUAL(result5.dimension(0), 3); | 
|  | VERIFY_IS_EQUAL(result5.dimension(1), 4); | 
|  | VERIFY_IS_EQUAL(result5.dimension(2), 5); | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | for (int j = 0; j < 4; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | sum = 0.0f; | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | sum += tensor4(i, l, j, l, k); | 
|  | } | 
|  | VERIFY_IS_EQUAL(result5(i, j, k), sum); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_trace_in_expr() { | 
|  | Tensor<float, 4, DataLayout> tensor(2, 3, 5, 3); | 
|  | tensor.setRandom(); | 
|  | array<ptrdiff_t, 2> dims = {{1, 3}}; | 
|  | Tensor<float, 2, DataLayout> result(2, 5); | 
|  | result = result.constant(1.0f) - tensor.trace(dims); | 
|  | VERIFY_IS_EQUAL(result.rank(), 2); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(result.dimension(1), 5); | 
|  | float sum = 0.0f; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 5; ++j) { | 
|  | sum = 0.0f; | 
|  | for (int k = 0; k < 3; ++k) { | 
|  | sum += tensor(i, k, j, k); | 
|  | } | 
|  | VERIFY_IS_EQUAL(result(i, j), 1.0f - sum); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(cxx11_tensor_trace) { | 
|  | CALL_SUBTEST(test_0D_trace<ColMajor>()); | 
|  | CALL_SUBTEST(test_0D_trace<RowMajor>()); | 
|  | CALL_SUBTEST(test_all_dimensions_trace<ColMajor>()); | 
|  | CALL_SUBTEST(test_all_dimensions_trace<RowMajor>()); | 
|  | CALL_SUBTEST(test_simple_trace<ColMajor>()); | 
|  | CALL_SUBTEST(test_simple_trace<RowMajor>()); | 
|  | CALL_SUBTEST(test_trace_in_expr<ColMajor>()); | 
|  | CALL_SUBTEST(test_trace_in_expr<RowMajor>()); | 
|  | } |