|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H | 
|  | #define EIGEN_HOUSEHOLDER_SEQUENCE_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \ingroup Householder_Module | 
|  | * \householder_module | 
|  | * \class HouseholderSequence | 
|  | * \brief Sequence of Householder reflections acting on subspaces with decreasing size | 
|  | * \tparam VectorsType type of matrix containing the Householder vectors | 
|  | * \tparam CoeffsType  type of vector containing the Householder coefficients | 
|  | * \tparam Side        either OnTheLeft (the default) or OnTheRight | 
|  | * | 
|  | * This class represents a product sequence of Householder reflections where the first Householder reflection | 
|  | * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by | 
|  | * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace | 
|  | * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but | 
|  | * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections | 
|  | * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods | 
|  | * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(), | 
|  | * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence. | 
|  | * | 
|  | * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the | 
|  | * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i | 
|  | * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$ | 
|  | * v_i \f$ is a vector of the form | 
|  | * \f[ | 
|  | * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. | 
|  | * \f] | 
|  | * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector. | 
|  | * | 
|  | * Typical usages are listed below, where H is a HouseholderSequence: | 
|  | * \code | 
|  | * A.applyOnTheRight(H);             // A = A * H | 
|  | * A.applyOnTheLeft(H);              // A = H * A | 
|  | * A.applyOnTheRight(H.adjoint());   // A = A * H^* | 
|  | * A.applyOnTheLeft(H.adjoint());    // A = H^* * A | 
|  | * MatrixXd Q = H;                   // conversion to a dense matrix | 
|  | * \endcode | 
|  | * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators. | 
|  | * | 
|  | * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example. | 
|  | * | 
|  | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
|  | */ | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename VectorsType, typename CoeffsType, int Side> | 
|  | struct traits<HouseholderSequence<VectorsType, CoeffsType, Side> > { | 
|  | typedef typename VectorsType::Scalar Scalar; | 
|  | typedef typename VectorsType::StorageIndex StorageIndex; | 
|  | typedef typename VectorsType::StorageKind StorageKind; | 
|  | enum { | 
|  | RowsAtCompileTime = | 
|  | Side == OnTheLeft ? traits<VectorsType>::RowsAtCompileTime : traits<VectorsType>::ColsAtCompileTime, | 
|  | ColsAtCompileTime = RowsAtCompileTime, | 
|  | MaxRowsAtCompileTime = | 
|  | Side == OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime : traits<VectorsType>::MaxColsAtCompileTime, | 
|  | MaxColsAtCompileTime = MaxRowsAtCompileTime, | 
|  | Flags = 0 | 
|  | }; | 
|  | }; | 
|  |  | 
|  | struct HouseholderSequenceShape {}; | 
|  |  | 
|  | template <typename VectorsType, typename CoeffsType, int Side> | 
|  | struct evaluator_traits<HouseholderSequence<VectorsType, CoeffsType, Side> > | 
|  | : public evaluator_traits_base<HouseholderSequence<VectorsType, CoeffsType, Side> > { | 
|  | typedef HouseholderSequenceShape Shape; | 
|  | }; | 
|  |  | 
|  | template <typename VectorsType, typename CoeffsType, int Side> | 
|  | struct hseq_side_dependent_impl { | 
|  | typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType; | 
|  | typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType; | 
|  | static EIGEN_DEVICE_FUNC inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) { | 
|  | Index start = k + 1 + h.m_shift; | 
|  | return Block<const VectorsType, Dynamic, 1>(h.m_vectors, start, k, h.rows() - start, 1); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename VectorsType, typename CoeffsType> | 
|  | struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight> { | 
|  | typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType; | 
|  | typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType; | 
|  | static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) { | 
|  | Index start = k + 1 + h.m_shift; | 
|  | return Block<const VectorsType, 1, Dynamic>(h.m_vectors, k, start, 1, h.rows() - start).transpose(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename OtherScalarType, typename MatrixType> | 
|  | struct matrix_type_times_scalar_type { | 
|  | typedef typename ScalarBinaryOpTraits<OtherScalarType, typename MatrixType::Scalar>::ReturnType ResultScalar; | 
|  | typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, 0, | 
|  | MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> | 
|  | Type; | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | template <typename VectorsType, typename CoeffsType, int Side> | 
|  | class HouseholderSequence : public EigenBase<HouseholderSequence<VectorsType, CoeffsType, Side> > { | 
|  | typedef typename internal::hseq_side_dependent_impl<VectorsType, CoeffsType, Side>::EssentialVectorType | 
|  | EssentialVectorType; | 
|  |  | 
|  | public: | 
|  | enum { | 
|  | RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime, | 
|  | ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime, | 
|  | MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename internal::traits<HouseholderSequence>::Scalar Scalar; | 
|  |  | 
|  | typedef HouseholderSequence< | 
|  | std::conditional_t<NumTraits<Scalar>::IsComplex, | 
|  | internal::remove_all_t<typename VectorsType::ConjugateReturnType>, VectorsType>, | 
|  | std::conditional_t<NumTraits<Scalar>::IsComplex, internal::remove_all_t<typename CoeffsType::ConjugateReturnType>, | 
|  | CoeffsType>, | 
|  | Side> | 
|  | ConjugateReturnType; | 
|  |  | 
|  | typedef HouseholderSequence< | 
|  | VectorsType, | 
|  | std::conditional_t<NumTraits<Scalar>::IsComplex, internal::remove_all_t<typename CoeffsType::ConjugateReturnType>, | 
|  | CoeffsType>, | 
|  | Side> | 
|  | AdjointReturnType; | 
|  |  | 
|  | typedef HouseholderSequence< | 
|  | std::conditional_t<NumTraits<Scalar>::IsComplex, | 
|  | internal::remove_all_t<typename VectorsType::ConjugateReturnType>, VectorsType>, | 
|  | CoeffsType, Side> | 
|  | TransposeReturnType; | 
|  |  | 
|  | typedef HouseholderSequence<std::add_const_t<VectorsType>, std::add_const_t<CoeffsType>, Side> | 
|  | ConstHouseholderSequence; | 
|  |  | 
|  | /** \brief Constructor. | 
|  | * \param[in]  v      %Matrix containing the essential parts of the Householder vectors | 
|  | * \param[in]  h      Vector containing the Householder coefficients | 
|  | * | 
|  | * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The | 
|  | * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th | 
|  | * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the | 
|  | * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many | 
|  | * Householder reflections as there are columns. | 
|  | * | 
|  | * \note The %HouseholderSequence object stores \p v and \p h by reference. | 
|  | * | 
|  | * Example: \include HouseholderSequence_HouseholderSequence.cpp | 
|  | * Output: \verbinclude HouseholderSequence_HouseholderSequence.out | 
|  | * | 
|  | * \sa setLength(), setShift() | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC HouseholderSequence(const VectorsType& v, const CoeffsType& h) | 
|  | : m_vectors(v), m_coeffs(h), m_reverse(false), m_length(v.diagonalSize()), m_shift(0) {} | 
|  |  | 
|  | /** \brief Copy constructor. */ | 
|  | EIGEN_DEVICE_FUNC HouseholderSequence(const HouseholderSequence& other) | 
|  | : m_vectors(other.m_vectors), | 
|  | m_coeffs(other.m_coeffs), | 
|  | m_reverse(other.m_reverse), | 
|  | m_length(other.m_length), | 
|  | m_shift(other.m_shift) {} | 
|  |  | 
|  | /** \brief Number of rows of transformation viewed as a matrix. | 
|  | * \returns Number of rows | 
|  | * \details This equals the dimension of the space that the transformation acts on. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { | 
|  | return Side == OnTheLeft ? m_vectors.rows() : m_vectors.cols(); | 
|  | } | 
|  |  | 
|  | /** \brief Number of columns of transformation viewed as a matrix. | 
|  | * \returns Number of columns | 
|  | * \details This equals the dimension of the space that the transformation acts on. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return rows(); } | 
|  |  | 
|  | /** \brief Essential part of a Householder vector. | 
|  | * \param[in]  k  Index of Householder reflection | 
|  | * \returns    Vector containing non-trivial entries of k-th Householder vector | 
|  | * | 
|  | * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of | 
|  | * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector | 
|  | * \f[ | 
|  | * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. | 
|  | * \f] | 
|  | * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v | 
|  | * passed to the constructor. | 
|  | * | 
|  | * \sa setShift(), shift() | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC const EssentialVectorType essentialVector(Index k) const { | 
|  | eigen_assert(k >= 0 && k < m_length); | 
|  | return internal::hseq_side_dependent_impl<VectorsType, CoeffsType, Side>::essentialVector(*this, k); | 
|  | } | 
|  |  | 
|  | /** \brief %Transpose of the Householder sequence. */ | 
|  | TransposeReturnType transpose() const { | 
|  | return TransposeReturnType(m_vectors.conjugate(), m_coeffs) | 
|  | .setReverseFlag(!m_reverse) | 
|  | .setLength(m_length) | 
|  | .setShift(m_shift); | 
|  | } | 
|  |  | 
|  | /** \brief Complex conjugate of the Householder sequence. */ | 
|  | ConjugateReturnType conjugate() const { | 
|  | return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate()) | 
|  | .setReverseFlag(m_reverse) | 
|  | .setLength(m_length) | 
|  | .setShift(m_shift); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the complex conjugate of \c *this if Cond==true, | 
|  | *           returns \c *this otherwise. | 
|  | */ | 
|  | template <bool Cond> | 
|  | EIGEN_DEVICE_FUNC inline std::conditional_t<Cond, ConjugateReturnType, ConstHouseholderSequence> conjugateIf() const { | 
|  | typedef std::conditional_t<Cond, ConjugateReturnType, ConstHouseholderSequence> ReturnType; | 
|  | return ReturnType(m_vectors.template conjugateIf<Cond>(), m_coeffs.template conjugateIf<Cond>()); | 
|  | } | 
|  |  | 
|  | /** \brief Adjoint (conjugate transpose) of the Householder sequence. */ | 
|  | AdjointReturnType adjoint() const { | 
|  | return AdjointReturnType(m_vectors, m_coeffs.conjugate()) | 
|  | .setReverseFlag(!m_reverse) | 
|  | .setLength(m_length) | 
|  | .setShift(m_shift); | 
|  | } | 
|  |  | 
|  | /** \brief Inverse of the Householder sequence (equals the adjoint). */ | 
|  | AdjointReturnType inverse() const { return adjoint(); } | 
|  |  | 
|  | /** \internal */ | 
|  | template <typename DestType> | 
|  | inline EIGEN_DEVICE_FUNC void evalTo(DestType& dst) const { | 
|  | Matrix<Scalar, DestType::RowsAtCompileTime, 1, AutoAlign | ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace( | 
|  | rows()); | 
|  | evalTo(dst, workspace); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template <typename Dest, typename Workspace> | 
|  | EIGEN_DEVICE_FUNC void evalTo(Dest& dst, Workspace& workspace) const { | 
|  | workspace.resize(rows()); | 
|  | Index vecs = m_length; | 
|  | if (internal::is_same_dense(dst, m_vectors)) { | 
|  | // in-place | 
|  | dst.diagonal().setOnes(); | 
|  | dst.template triangularView<StrictlyUpper>().setZero(); | 
|  | for (Index k = vecs - 1; k >= 0; --k) { | 
|  | Index cornerSize = rows() - k - m_shift; | 
|  | if (m_reverse) | 
|  | dst.bottomRightCorner(cornerSize, cornerSize) | 
|  | .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); | 
|  | else | 
|  | dst.bottomRightCorner(cornerSize, cornerSize) | 
|  | .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); | 
|  |  | 
|  | // clear the off diagonal vector | 
|  | dst.col(k).tail(rows() - k - 1).setZero(); | 
|  | } | 
|  | // clear the remaining columns if needed | 
|  | for (Index k = 0; k < cols() - vecs; ++k) dst.col(k).tail(rows() - k - 1).setZero(); | 
|  | } else if (m_length > BlockSize) { | 
|  | dst.setIdentity(rows(), rows()); | 
|  | if (m_reverse) | 
|  | applyThisOnTheLeft(dst, workspace, true); | 
|  | else | 
|  | applyThisOnTheLeft(dst, workspace, true); | 
|  | } else { | 
|  | dst.setIdentity(rows(), rows()); | 
|  | for (Index k = vecs - 1; k >= 0; --k) { | 
|  | Index cornerSize = rows() - k - m_shift; | 
|  | if (m_reverse) | 
|  | dst.bottomRightCorner(cornerSize, cornerSize) | 
|  | .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); | 
|  | else | 
|  | dst.bottomRightCorner(cornerSize, cornerSize) | 
|  | .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template <typename Dest> | 
|  | inline void applyThisOnTheRight(Dest& dst) const { | 
|  | Matrix<Scalar, 1, Dest::RowsAtCompileTime, RowMajor, 1, Dest::MaxRowsAtCompileTime> workspace(dst.rows()); | 
|  | applyThisOnTheRight(dst, workspace); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template <typename Dest, typename Workspace> | 
|  | inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const { | 
|  | workspace.resize(dst.rows()); | 
|  | for (Index k = 0; k < m_length; ++k) { | 
|  | Index actual_k = m_reverse ? m_length - k - 1 : k; | 
|  | dst.rightCols(rows() - m_shift - actual_k) | 
|  | .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template <typename Dest> | 
|  | inline void applyThisOnTheLeft(Dest& dst, bool inputIsIdentity = false) const { | 
|  | Matrix<Scalar, 1, Dest::ColsAtCompileTime, RowMajor, 1, Dest::MaxColsAtCompileTime> workspace; | 
|  | applyThisOnTheLeft(dst, workspace, inputIsIdentity); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template <typename Dest, typename Workspace> | 
|  | inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace, bool inputIsIdentity = false) const { | 
|  | if (inputIsIdentity && m_reverse) inputIsIdentity = false; | 
|  | // if the entries are large enough, then apply the reflectors by block | 
|  | if (m_length >= BlockSize && dst.cols() > 1) { | 
|  | // Make sure we have at least 2 useful blocks, otherwise it is point-less: | 
|  | Index blockSize = m_length < Index(2 * BlockSize) ? (m_length + 1) / 2 : Index(BlockSize); | 
|  | for (Index i = 0; i < m_length; i += blockSize) { | 
|  | Index end = m_reverse ? (std::min)(m_length, i + blockSize) : m_length - i; | 
|  | Index k = m_reverse ? i : (std::max)(Index(0), end - blockSize); | 
|  | Index bs = end - k; | 
|  | Index start = k + m_shift; | 
|  |  | 
|  | typedef Block<internal::remove_all_t<VectorsType>, Dynamic, Dynamic> SubVectorsType; | 
|  | SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side == OnTheRight ? k : start, | 
|  | Side == OnTheRight ? start : k, Side == OnTheRight ? bs : m_vectors.rows() - start, | 
|  | Side == OnTheRight ? m_vectors.cols() - start : bs); | 
|  | std::conditional_t<Side == OnTheRight, Transpose<SubVectorsType>, SubVectorsType&> sub_vecs(sub_vecs1); | 
|  |  | 
|  | Index dstRows = rows() - m_shift - k; | 
|  |  | 
|  | if (inputIsIdentity) { | 
|  | Block<Dest, Dynamic, Dynamic> sub_dst = dst.bottomRightCorner(dstRows, dstRows); | 
|  | apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_reverse); | 
|  | } else { | 
|  | auto sub_dst = dst.bottomRows(dstRows); | 
|  | apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_reverse); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | workspace.resize(dst.cols()); | 
|  | for (Index k = 0; k < m_length; ++k) { | 
|  | Index actual_k = m_reverse ? k : m_length - k - 1; | 
|  | Index dstRows = rows() - m_shift - actual_k; | 
|  |  | 
|  | if (inputIsIdentity) { | 
|  | Block<Dest, Dynamic, Dynamic> sub_dst = dst.bottomRightCorner(dstRows, dstRows); | 
|  | sub_dst.applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); | 
|  | } else { | 
|  | auto sub_dst = dst.bottomRows(dstRows); | 
|  | sub_dst.applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \brief Computes the product of a Householder sequence with a matrix. | 
|  | * \param[in]  other  %Matrix being multiplied. | 
|  | * \returns    Expression object representing the product. | 
|  | * | 
|  | * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this | 
|  | * and \f$ M \f$ is the matrix \p other. | 
|  | */ | 
|  | template <typename OtherDerived> | 
|  | typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*( | 
|  | const MatrixBase<OtherDerived>& other) const { | 
|  | typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type res( | 
|  | other.template cast<typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::ResultScalar>()); | 
|  | applyThisOnTheLeft(res, internal::is_identity<OtherDerived>::value && res.rows() == res.cols()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template <typename VectorsType_, typename CoeffsType_, int Side_> | 
|  | friend struct internal::hseq_side_dependent_impl; | 
|  |  | 
|  | /** \brief Sets the length of the Householder sequence. | 
|  | * \param [in]  length  New value for the length. | 
|  | * | 
|  | * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set | 
|  | * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that | 
|  | * is smaller. After this function is called, the length equals \p length. | 
|  | * | 
|  | * \sa length() | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC HouseholderSequence& setLength(Index length) { | 
|  | m_length = length; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \brief Sets the shift of the Householder sequence. | 
|  | * \param [in]  shift  New value for the shift. | 
|  | * | 
|  | * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th | 
|  | * column of the matrix \p v passed to the constructor corresponds to the i-th Householder | 
|  | * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}} | 
|  | * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th | 
|  | * Householder reflection. | 
|  | * | 
|  | * \sa shift() | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC HouseholderSequence& setShift(Index shift) { | 
|  | m_shift = shift; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC Index length() const { | 
|  | return m_length; | 
|  | } /**< \brief Returns the length of the Householder sequence. */ | 
|  |  | 
|  | EIGEN_DEVICE_FUNC Index shift() const { | 
|  | return m_shift; | 
|  | } /**< \brief Returns the shift of the Householder sequence. */ | 
|  |  | 
|  | /* Necessary for .adjoint() and .conjugate() */ | 
|  | template <typename VectorsType2, typename CoeffsType2, int Side2> | 
|  | friend class HouseholderSequence; | 
|  |  | 
|  | protected: | 
|  | /** \internal | 
|  | * \brief Sets the reverse flag. | 
|  | * \param [in]  reverse  New value of the reverse flag. | 
|  | * | 
|  | * By default, the reverse flag is not set. If the reverse flag is set, then this object represents | 
|  | * \f$ H^r = H_{n-1} \ldots H_1 H_0 \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$. | 
|  | * \note For real valued HouseholderSequence this is equivalent to transposing \f$ H \f$. | 
|  | * | 
|  | * \sa reverseFlag(), transpose(), adjoint() | 
|  | */ | 
|  | HouseholderSequence& setReverseFlag(bool reverse) { | 
|  | m_reverse = reverse; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | bool reverseFlag() const { return m_reverse; } /**< \internal \brief Returns the reverse flag. */ | 
|  |  | 
|  | typename VectorsType::Nested m_vectors; | 
|  | typename CoeffsType::Nested m_coeffs; | 
|  | bool m_reverse; | 
|  | Index m_length; | 
|  | Index m_shift; | 
|  | enum { BlockSize = 48 }; | 
|  | }; | 
|  |  | 
|  | /** \brief Computes the product of a matrix with a Householder sequence. | 
|  | * \param[in]  other  %Matrix being multiplied. | 
|  | * \param[in]  h      %HouseholderSequence being multiplied. | 
|  | * \returns    Expression object representing the product. | 
|  | * | 
|  | * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the | 
|  | * Householder sequence represented by \p h. | 
|  | */ | 
|  | template <typename OtherDerived, typename VectorsType, typename CoeffsType, int Side> | 
|  | typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar, OtherDerived>::Type operator*( | 
|  | const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType, CoeffsType, Side>& h) { | 
|  | typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar, OtherDerived>::Type res( | 
|  | other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar, | 
|  | OtherDerived>::ResultScalar>()); | 
|  | h.applyThisOnTheRight(res); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** \ingroup Householder_Module \householder_module | 
|  | * \brief Convenience function for constructing a Householder sequence. | 
|  | * \returns A HouseholderSequence constructed from the specified arguments. | 
|  | */ | 
|  | template <typename VectorsType, typename CoeffsType> | 
|  | HouseholderSequence<VectorsType, CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h) { | 
|  | return HouseholderSequence<VectorsType, CoeffsType, OnTheLeft>(v, h); | 
|  | } | 
|  |  | 
|  | /** \ingroup Householder_Module \householder_module | 
|  | * \brief Convenience function for constructing a Householder sequence. | 
|  | * \returns A HouseholderSequence constructed from the specified arguments. | 
|  | * \details This function differs from householderSequence() in that the template argument \p OnTheSide of | 
|  | * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft. | 
|  | */ | 
|  | template <typename VectorsType, typename CoeffsType> | 
|  | HouseholderSequence<VectorsType, CoeffsType, OnTheRight> rightHouseholderSequence(const VectorsType& v, | 
|  | const CoeffsType& h) { | 
|  | return HouseholderSequence<VectorsType, CoeffsType, OnTheRight>(v, h); | 
|  | } | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_HOUSEHOLDER_SEQUENCE_H |