|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2010 Vincent Lejeune | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_QR_H | 
|  | #define EIGEN_QR_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  | template <typename MatrixType_> | 
|  | struct traits<HouseholderQR<MatrixType_>> : traits<MatrixType_> { | 
|  | typedef MatrixXpr XprKind; | 
|  | typedef SolverStorage StorageKind; | 
|  | typedef int StorageIndex; | 
|  | enum { Flags = 0 }; | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** \ingroup QR_Module | 
|  | * | 
|  | * | 
|  | * \class HouseholderQR | 
|  | * | 
|  | * \brief Householder QR decomposition of a matrix | 
|  | * | 
|  | * \tparam MatrixType_ the type of the matrix of which we are computing the QR decomposition | 
|  | * | 
|  | * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R | 
|  | * such that | 
|  | * \f[ | 
|  | *  \mathbf{A} = \mathbf{Q} \, \mathbf{R} | 
|  | * \f] | 
|  | * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix. | 
|  | * The result is stored in a compact way compatible with LAPACK. | 
|  | * | 
|  | * Note that no pivoting is performed. This is \b not a rank-revealing decomposition. | 
|  | * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead. | 
|  | * | 
|  | * This Householder QR decomposition is faster, but less numerically stable and less feature-full than | 
|  | * FullPivHouseholderQR or ColPivHouseholderQR. | 
|  | * | 
|  | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. | 
|  | * | 
|  | * \sa MatrixBase::householderQr() | 
|  | */ | 
|  | template <typename MatrixType_> | 
|  | class HouseholderQR : public SolverBase<HouseholderQR<MatrixType_>> { | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef SolverBase<HouseholderQR> Base; | 
|  | friend class SolverBase<HouseholderQR>; | 
|  |  | 
|  | EIGEN_GENERIC_PUBLIC_INTERFACE(HouseholderQR) | 
|  | enum { | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags & RowMajorBit) ? RowMajor : ColMajor, | 
|  | MaxRowsAtCompileTime, MaxRowsAtCompileTime> | 
|  | MatrixQType; | 
|  | typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; | 
|  | typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; | 
|  | typedef HouseholderSequence<MatrixType, internal::remove_all_t<typename HCoeffsType::ConjugateReturnType>> | 
|  | HouseholderSequenceType; | 
|  |  | 
|  | /** | 
|  | * \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via HouseholderQR::compute(const MatrixType&). | 
|  | */ | 
|  | HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {} | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa HouseholderQR() | 
|  | */ | 
|  | HouseholderQR(Index rows, Index cols) | 
|  | : m_qr(rows, cols), m_hCoeffs((std::min)(rows, cols)), m_temp(cols), m_isInitialized(false) {} | 
|  |  | 
|  | /** \brief Constructs a QR factorization from a given matrix | 
|  | * | 
|  | * This constructor computes the QR factorization of the matrix \a matrix by calling | 
|  | * the method compute(). It is a short cut for: | 
|  | * | 
|  | * \code | 
|  | * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); | 
|  | * qr.compute(matrix); | 
|  | * \endcode | 
|  | * | 
|  | * \sa compute() | 
|  | */ | 
|  | template <typename InputType> | 
|  | explicit HouseholderQR(const EigenBase<InputType>& matrix) | 
|  | : m_qr(matrix.rows(), matrix.cols()), | 
|  | m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), | 
|  | m_temp(matrix.cols()), | 
|  | m_isInitialized(false) { | 
|  | compute(matrix.derived()); | 
|  | } | 
|  |  | 
|  | /** \brief Constructs a QR factorization from a given matrix | 
|  | * | 
|  | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when | 
|  | * \c MatrixType is a Eigen::Ref. | 
|  | * | 
|  | * \sa HouseholderQR(const EigenBase&) | 
|  | */ | 
|  | template <typename InputType> | 
|  | explicit HouseholderQR(EigenBase<InputType>& matrix) | 
|  | : m_qr(matrix.derived()), | 
|  | m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), | 
|  | m_temp(matrix.cols()), | 
|  | m_isInitialized(false) { | 
|  | computeInPlace(); | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** This method finds a solution x to the equation Ax=b, where A is the matrix of which | 
|  | * *this is the QR decomposition, if any exists. | 
|  | * | 
|  | * \param b the right-hand-side of the equation to solve. | 
|  | * | 
|  | * \returns a solution. | 
|  | * | 
|  | * \note_about_checking_solutions | 
|  | * | 
|  | * \note_about_arbitrary_choice_of_solution | 
|  | * | 
|  | * Example: \include HouseholderQR_solve.cpp | 
|  | * Output: \verbinclude HouseholderQR_solve.out | 
|  | */ | 
|  | template <typename Rhs> | 
|  | inline const Solve<HouseholderQR, Rhs> solve(const MatrixBase<Rhs>& b) const; | 
|  | #endif | 
|  |  | 
|  | /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations. | 
|  | * | 
|  | * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix | 
|  | * object. Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix | 
|  | * products using operator*: | 
|  | * | 
|  | * Example: \include HouseholderQR_householderQ.cpp | 
|  | * Output: \verbinclude HouseholderQR_householderQ.out | 
|  | */ | 
|  | HouseholderSequenceType householderQ() const { | 
|  | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
|  | return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); | 
|  | } | 
|  |  | 
|  | /** \returns a reference to the matrix where the Householder QR decomposition is stored | 
|  | * in a LAPACK-compatible way. | 
|  | */ | 
|  | const MatrixType& matrixQR() const { | 
|  | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
|  | return m_qr; | 
|  | } | 
|  |  | 
|  | template <typename InputType> | 
|  | HouseholderQR& compute(const EigenBase<InputType>& matrix) { | 
|  | m_qr = matrix.derived(); | 
|  | computeInPlace(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \warning a determinant can be very big or small, so for matrices | 
|  | * of large enough dimension, there is a risk of overflow/underflow. | 
|  | * One way to work around that is to use logAbsDeterminant() instead. | 
|  | * Also, do not rely on the determinant being exactly zero for testing | 
|  | * singularity or rank-deficiency. | 
|  | * | 
|  | * \sa absDeterminant(), logAbsDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::Scalar determinant() const; | 
|  |  | 
|  | /** \returns the absolute value of the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \warning a determinant can be very big or small, so for matrices | 
|  | * of large enough dimension, there is a risk of overflow/underflow. | 
|  | * One way to work around that is to use logAbsDeterminant() instead. | 
|  | * Also, do not rely on the determinant being exactly zero for testing | 
|  | * singularity or rank-deficiency. | 
|  | * | 
|  | * \sa determinant(), logAbsDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::RealScalar absDeterminant() const; | 
|  |  | 
|  | /** \returns the natural log of the absolute value of the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \note This method is useful to work around the risk of overflow/underflow that's inherent | 
|  | * to determinant computation. | 
|  | * | 
|  | * \warning Do not rely on the determinant being exactly zero for testing | 
|  | * singularity or rank-deficiency. | 
|  | * | 
|  | * \sa determinant(), absDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::RealScalar logAbsDeterminant() const; | 
|  |  | 
|  | /** \returns the sign of the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \note This method is useful to work around the risk of overflow/underflow that's inherent | 
|  | * to determinant computation. | 
|  | * | 
|  | * \warning Do not rely on the determinant being exactly zero for testing | 
|  | * singularity or rank-deficiency. | 
|  | * | 
|  | * \sa determinant(), absDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::Scalar signDeterminant() const; | 
|  |  | 
|  | inline Index rows() const { return m_qr.rows(); } | 
|  | inline Index cols() const { return m_qr.cols(); } | 
|  |  | 
|  | /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. | 
|  | * | 
|  | * For advanced uses only. | 
|  | */ | 
|  | const HCoeffsType& hCoeffs() const { return m_hCoeffs; } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template <typename RhsType, typename DstType> | 
|  | void _solve_impl(const RhsType& rhs, DstType& dst) const; | 
|  |  | 
|  | template <bool Conjugate, typename RhsType, typename DstType> | 
|  | void _solve_impl_transposed(const RhsType& rhs, DstType& dst) const; | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
|  |  | 
|  | void computeInPlace(); | 
|  |  | 
|  | MatrixType m_qr; | 
|  | HCoeffsType m_hCoeffs; | 
|  | RowVectorType m_temp; | 
|  | bool m_isInitialized; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /** \internal */ | 
|  | template <typename HCoeffs, typename Scalar, bool IsComplex> | 
|  | struct householder_determinant { | 
|  | static void run(const HCoeffs& hCoeffs, Scalar& out_det) { | 
|  | out_det = Scalar(1); | 
|  | Index size = hCoeffs.rows(); | 
|  | for (Index i = 0; i < size; i++) { | 
|  | // For each valid reflection Q_n, | 
|  | // det(Q_n) = - conj(h_n) / h_n | 
|  | // where h_n is the Householder coefficient. | 
|  | if (hCoeffs(i) != Scalar(0)) out_det *= -numext::conj(hCoeffs(i)) / hCoeffs(i); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \internal */ | 
|  | template <typename HCoeffs, typename Scalar> | 
|  | struct householder_determinant<HCoeffs, Scalar, false> { | 
|  | static void run(const HCoeffs& hCoeffs, Scalar& out_det) { | 
|  | bool negated = false; | 
|  | Index size = hCoeffs.rows(); | 
|  | for (Index i = 0; i < size; i++) { | 
|  | // Each valid reflection negates the determinant. | 
|  | if (hCoeffs(i) != Scalar(0)) negated ^= true; | 
|  | } | 
|  | out_det = negated ? Scalar(-1) : Scalar(1); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | template <typename MatrixType> | 
|  | typename MatrixType::Scalar HouseholderQR<MatrixType>::determinant() const { | 
|  | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
|  | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | Scalar detQ; | 
|  | internal::householder_determinant<HCoeffsType, Scalar, NumTraits<Scalar>::IsComplex>::run(m_hCoeffs, detQ); | 
|  | return m_qr.diagonal().prod() * detQ; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const { | 
|  | using std::abs; | 
|  | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
|  | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | return abs(m_qr.diagonal().prod()); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const { | 
|  | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
|  | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | return m_qr.diagonal().cwiseAbs().array().log().sum(); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | typename MatrixType::Scalar HouseholderQR<MatrixType>::signDeterminant() const { | 
|  | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
|  | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | Scalar detQ; | 
|  | internal::householder_determinant<HCoeffsType, Scalar, NumTraits<Scalar>::IsComplex>::run(m_hCoeffs, detQ); | 
|  | return detQ * m_qr.diagonal().array().sign().prod(); | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /** \internal */ | 
|  | template <typename MatrixQR, typename HCoeffs> | 
|  | void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0) { | 
|  | typedef typename MatrixQR::Scalar Scalar; | 
|  | typedef typename MatrixQR::RealScalar RealScalar; | 
|  | Index rows = mat.rows(); | 
|  | Index cols = mat.cols(); | 
|  | Index size = (std::min)(rows, cols); | 
|  |  | 
|  | eigen_assert(hCoeffs.size() == size); | 
|  |  | 
|  | typedef Matrix<Scalar, MatrixQR::ColsAtCompileTime, 1> TempType; | 
|  | TempType tempVector; | 
|  | if (tempData == 0) { | 
|  | tempVector.resize(cols); | 
|  | tempData = tempVector.data(); | 
|  | } | 
|  |  | 
|  | for (Index k = 0; k < size; ++k) { | 
|  | Index remainingRows = rows - k; | 
|  | Index remainingCols = cols - k - 1; | 
|  |  | 
|  | RealScalar beta; | 
|  | mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta); | 
|  | mat.coeffRef(k, k) = beta; | 
|  |  | 
|  | // apply H to remaining part of m_qr from the left | 
|  | mat.bottomRightCorner(remainingRows, remainingCols) | 
|  | .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows - 1), hCoeffs.coeffRef(k), tempData + k + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: add a corresponding public API for updating a QR factorization | 
|  | /** \internal | 
|  | * Basically a modified copy of @c Eigen::internal::householder_qr_inplace_unblocked that | 
|  | * performs a rank-1 update of the QR matrix in compact storage. This function assumes, that | 
|  | * the first @c k-1 columns of the matrix @c mat contain the QR decomposition of \f$A^N\f$ up to | 
|  | * column k-1. Then the QR decomposition of the k-th column (given by @c newColumn) is computed by | 
|  | * applying the k-1 Householder projectors on it and finally compute the projector \f$H_k\f$ of | 
|  | * it. On exit the matrix @c mat and the vector @c hCoeffs contain the QR decomposition of the | 
|  | * first k columns of \f$A^N\f$. The \a tempData argument must point to at least mat.cols() scalars.  */ | 
|  | template <typename MatrixQR, typename HCoeffs, typename VectorQR> | 
|  | void householder_qr_inplace_update(MatrixQR& mat, HCoeffs& hCoeffs, const VectorQR& newColumn, | 
|  | typename MatrixQR::Index k, typename MatrixQR::Scalar* tempData) { | 
|  | typedef typename MatrixQR::Index Index; | 
|  | typedef typename MatrixQR::RealScalar RealScalar; | 
|  | Index rows = mat.rows(); | 
|  |  | 
|  | eigen_assert(k < mat.cols()); | 
|  | eigen_assert(k < rows); | 
|  | eigen_assert(hCoeffs.size() == mat.cols()); | 
|  | eigen_assert(newColumn.size() == rows); | 
|  | eigen_assert(tempData); | 
|  |  | 
|  | // Store new column in mat at column k | 
|  | mat.col(k) = newColumn; | 
|  | // Apply H = H_1...H_{k-1} on newColumn (skip if k=0) | 
|  | for (Index i = 0; i < k; ++i) { | 
|  | Index remainingRows = rows - i; | 
|  | mat.col(k) | 
|  | .tail(remainingRows) | 
|  | .applyHouseholderOnTheLeft(mat.col(i).tail(remainingRows - 1), hCoeffs.coeffRef(i), tempData + i + 1); | 
|  | } | 
|  | // Construct Householder projector in-place in column k | 
|  | RealScalar beta; | 
|  | mat.col(k).tail(rows - k).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta); | 
|  | mat.coeffRef(k, k) = beta; | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template <typename MatrixQR, typename HCoeffs, typename MatrixQRScalar = typename MatrixQR::Scalar, | 
|  | bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)> | 
|  | struct householder_qr_inplace_blocked { | 
|  | // This is specialized for LAPACK-supported Scalar types in HouseholderQR_LAPACKE.h | 
|  | static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index maxBlockSize = 32, typename MatrixQR::Scalar* tempData = 0) { | 
|  | typedef typename MatrixQR::Scalar Scalar; | 
|  | typedef Block<MatrixQR, Dynamic, Dynamic> BlockType; | 
|  |  | 
|  | Index rows = mat.rows(); | 
|  | Index cols = mat.cols(); | 
|  | Index size = (std::min)(rows, cols); | 
|  |  | 
|  | typedef Matrix<Scalar, Dynamic, 1, ColMajor, MatrixQR::MaxColsAtCompileTime, 1> TempType; | 
|  | TempType tempVector; | 
|  | if (tempData == 0) { | 
|  | tempVector.resize(cols); | 
|  | tempData = tempVector.data(); | 
|  | } | 
|  |  | 
|  | Index blockSize = (std::min)(maxBlockSize, size); | 
|  |  | 
|  | Index k = 0; | 
|  | for (k = 0; k < size; k += blockSize) { | 
|  | Index bs = (std::min)(size - k, blockSize);  // actual size of the block | 
|  | Index tcols = cols - k - bs;                 // trailing columns | 
|  | Index brows = rows - k;                      // rows of the block | 
|  |  | 
|  | // partition the matrix: | 
|  | //        A00 | A01 | A02 | 
|  | // mat  = A10 | A11 | A12 | 
|  | //        A20 | A21 | A22 | 
|  | // and performs the qr dec of [A11^T A12^T]^T | 
|  | // and update [A21^T A22^T]^T using level 3 operations. | 
|  | // Finally, the algorithm continue on A22 | 
|  |  | 
|  | BlockType A11_21 = mat.block(k, k, brows, bs); | 
|  | Block<HCoeffs, Dynamic, 1> hCoeffsSegment = hCoeffs.segment(k, bs); | 
|  |  | 
|  | householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData); | 
|  |  | 
|  | if (tcols) { | 
|  | BlockType A21_22 = mat.block(k, k + bs, brows, tcols); | 
|  | apply_block_householder_on_the_left(A21_22, A11_21, hCoeffsSegment, false);  // false == backward | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template <typename MatrixType_> | 
|  | template <typename RhsType, typename DstType> | 
|  | void HouseholderQR<MatrixType_>::_solve_impl(const RhsType& rhs, DstType& dst) const { | 
|  | const Index rank = (std::min)(rows(), cols()); | 
|  |  | 
|  | typename RhsType::PlainObject c(rhs); | 
|  |  | 
|  | c.applyOnTheLeft(householderQ().setLength(rank).adjoint()); | 
|  |  | 
|  | m_qr.topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(c.topRows(rank)); | 
|  |  | 
|  | dst.topRows(rank) = c.topRows(rank); | 
|  | dst.bottomRows(cols() - rank).setZero(); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType_> | 
|  | template <bool Conjugate, typename RhsType, typename DstType> | 
|  | void HouseholderQR<MatrixType_>::_solve_impl_transposed(const RhsType& rhs, DstType& dst) const { | 
|  | const Index rank = (std::min)(rows(), cols()); | 
|  |  | 
|  | typename RhsType::PlainObject c(rhs); | 
|  |  | 
|  | m_qr.topLeftCorner(rank, rank) | 
|  | .template triangularView<Upper>() | 
|  | .transpose() | 
|  | .template conjugateIf<Conjugate>() | 
|  | .solveInPlace(c.topRows(rank)); | 
|  |  | 
|  | dst.topRows(rank) = c.topRows(rank); | 
|  | dst.bottomRows(rows() - rank).setZero(); | 
|  |  | 
|  | dst.applyOnTheLeft(householderQ().setLength(rank).template conjugateIf<!Conjugate>()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** Performs the QR factorization of the given matrix \a matrix. The result of | 
|  | * the factorization is stored into \c *this, and a reference to \c *this | 
|  | * is returned. | 
|  | * | 
|  | * \sa class HouseholderQR, HouseholderQR(const MatrixType&) | 
|  | */ | 
|  | template <typename MatrixType> | 
|  | void HouseholderQR<MatrixType>::computeInPlace() { | 
|  | Index rows = m_qr.rows(); | 
|  | Index cols = m_qr.cols(); | 
|  | Index size = (std::min)(rows, cols); | 
|  |  | 
|  | m_hCoeffs.resize(size); | 
|  |  | 
|  | m_temp.resize(cols); | 
|  |  | 
|  | internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data()); | 
|  |  | 
|  | m_isInitialized = true; | 
|  | } | 
|  |  | 
|  | /** \return the Householder QR decomposition of \c *this. | 
|  | * | 
|  | * \sa class HouseholderQR | 
|  | */ | 
|  | template <typename Derived> | 
|  | const HouseholderQR<typename MatrixBase<Derived>::PlainObject> MatrixBase<Derived>::householderQr() const { | 
|  | return HouseholderQR<PlainObject>(eval()); | 
|  | } | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_QR_H |