|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_TRANSFORM_H | 
|  | #define EIGEN_TRANSFORM_H | 
|  |  | 
|  | // Note that we have to pass Dim and HDim because it is not allowed to use a template | 
|  | // parameter to define a template specialization. To be more precise, in the following | 
|  | // specializations, it is not allowed to use Dim+1 instead of HDim. | 
|  | template< typename Other, | 
|  | int Mode, | 
|  | int Dim, | 
|  | int HDim, | 
|  | int OtherRows=Other::RowsAtCompileTime, | 
|  | int OtherCols=Other::ColsAtCompileTime> | 
|  | struct ei_transform_right_product_impl; | 
|  |  | 
|  | template<typename TransformType> struct ei_transform_take_affine_part; | 
|  |  | 
|  | template< typename Other, | 
|  | int Mode, | 
|  | int Dim, | 
|  | int HDim, | 
|  | int OtherRows=Other::RowsAtCompileTime, | 
|  | int OtherCols=Other::ColsAtCompileTime> | 
|  | struct ei_transform_left_product_impl; | 
|  |  | 
|  | template<typename Lhs,typename Rhs> struct ei_transform_transform_product_impl; | 
|  |  | 
|  | template< typename Other, | 
|  | int Mode, | 
|  | int Dim, | 
|  | int HDim, | 
|  | int OtherRows=Other::RowsAtCompileTime, | 
|  | int OtherCols=Other::ColsAtCompileTime> | 
|  | struct ei_transform_construct_from_matrix; | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \class Transform | 
|  | * | 
|  | * \brief Represents an homogeneous transformation in a N dimensional space | 
|  | * | 
|  | * \param _Scalar the scalar type, i.e., the type of the coefficients | 
|  | * \param _Dim the dimension of the space | 
|  | * \param _Mode the type of the transformation. Can be: | 
|  | *              - Affine: the transformation is stored as a (Dim+1)^2 matrix, | 
|  | *                        where the last row is assumed to be [0 ... 0 1]. | 
|  | *                        This is the default. | 
|  | *              - AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. | 
|  | *              - Projective: the transformation is stored as a (Dim+1)^2 matrix | 
|  | *                            whithout any assumption. | 
|  | * | 
|  | * The homography is internally represented and stored by a matrix which | 
|  | * is available through the matrix() method. To understand the behavior of | 
|  | * this class you have to think a Transform object as its internal | 
|  | * matrix representation. The chosen convention is right multiply: | 
|  | * | 
|  | * \code v' = T * v \endcode | 
|  | * | 
|  | * Thefore, an affine transformation matrix M is shaped like this: | 
|  | * | 
|  | * \f$ \left( \begin{array}{cc} | 
|  | * linear & translation\\ | 
|  | * 0 ... 0 & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * Note that for a provective transformation the last row can be anything, | 
|  | * and then the interpretation of different parts might be sighlty different. | 
|  | * | 
|  | * However, unlike a plain matrix, the Transform class provides many features | 
|  | * simplifying both its assembly and usage. In particular, it can be composed | 
|  | * with any other transformations (Transform,Trnaslation,RotationBase,Matrix) | 
|  | * and can be directly used to transform implicit homogeneous vectors. All these | 
|  | * operations are handled via the operator*. For the composition of transformations, | 
|  | * its principle consists to first convert the right/left hand sides of the product | 
|  | * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. | 
|  | * Of course, internally, operator* tries to perform the minimal number of operations | 
|  | * according to the nature of each terms. Likewise, when applying the transform | 
|  | * to non homogeneous vectors, the latters are automatically promoted to homogeneous | 
|  | * one before doing the matrix product. The convertions to homogeneous representations | 
|  | * are performed as follow: | 
|  | * | 
|  | * \b Translation t (Dim)x(1): | 
|  | * \f$ \left( \begin{array}{cc} | 
|  | * I & t \\ | 
|  | * 0\,...\,0 & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Rotation R (Dim)x(Dim): | 
|  | * \f$ \left( \begin{array}{cc} | 
|  | * R & 0\\ | 
|  | * 0\,...\,0 & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Linear \b Matrix L (Dim)x(Dim): | 
|  | * \f$ \left( \begin{array}{cc} | 
|  | * L & 0\\ | 
|  | * 0\,...\,0 & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Affine \b Matrix A (Dim)x(Dim+1): | 
|  | * \f$ \left( \begin{array}{c} | 
|  | * A\\ | 
|  | * 0\,...\,0\,1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Column \b vector v (Dim)x(1): | 
|  | * \f$ \left( \begin{array}{c} | 
|  | * v\\ | 
|  | * 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Set \b of \b column \b vectors V1...Vn (Dim)x(n): | 
|  | * \f$ \left( \begin{array}{ccc} | 
|  | * v_1 & ... & v_n\\ | 
|  | * 1 & ... & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * The concatenation of a Tranform object with any kind of other transformation | 
|  | * always returns a Transform object. | 
|  | * | 
|  | * A little execption to the "as pure matrix product" rule is the case of the | 
|  | * transformation of non homogeneous vectors by an affine transformation. In | 
|  | * that case the last matrix row can be ignored, and the product returns non | 
|  | * homogeneous vectors. | 
|  | * | 
|  | * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, | 
|  | * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. | 
|  | * The solution is either to use a Dim x Dynamic matrix or explicitely request a | 
|  | * vector transformation by making the vector homogeneous: | 
|  | * \code | 
|  | * m' = T * m.colwise().homogeneous(); | 
|  | * \endcode | 
|  | * Note that there is zero overhead. | 
|  | * | 
|  | * Conversion methods from/to Qt's QMatrix and QTransform are available if the | 
|  | * preprocessor token EIGEN_QT_SUPPORT is defined. | 
|  | * | 
|  | * \sa class Matrix, class Quaternion | 
|  | */ | 
|  | template<typename _Scalar, int _Dim, int _Mode> | 
|  | class Transform | 
|  | { | 
|  | public: | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) | 
|  | enum { | 
|  | Mode = _Mode, | 
|  | Dim = _Dim,     ///< space dimension in which the transformation holds | 
|  | HDim = _Dim+1,  ///< size of a respective homogeneous vector | 
|  | Rows = int(Mode)==(AffineCompact) ? Dim : HDim | 
|  | }; | 
|  | /** the scalar type of the coefficients */ | 
|  | typedef _Scalar Scalar; | 
|  | typedef DenseIndex Index; | 
|  | /** type of the matrix used to represent the transformation */ | 
|  | typedef Matrix<Scalar,Rows,HDim> MatrixType; | 
|  | /** type of the matrix used to represent the linear part of the transformation */ | 
|  | typedef Matrix<Scalar,Dim,Dim> LinearMatrixType; | 
|  | /** type of read/write reference to the linear part of the transformation */ | 
|  | typedef Block<MatrixType,Dim,Dim> LinearPart; | 
|  | /** type of read/write reference to the affine part of the transformation */ | 
|  | typedef typename ei_meta_if<int(Mode)==int(AffineCompact), | 
|  | MatrixType&, | 
|  | Block<MatrixType,Dim,HDim> >::ret AffinePart; | 
|  | /** type of read/write reference to the affine part of the transformation */ | 
|  | typedef typename ei_meta_if<int(Mode)==int(AffineCompact), | 
|  | MatrixType&, | 
|  | Block<MatrixType,Dim,HDim> >::ret AffinePartNested; | 
|  | /** type of a vector */ | 
|  | typedef Matrix<Scalar,Dim,1> VectorType; | 
|  | /** type of a read/write reference to the translation part of the rotation */ | 
|  | typedef Block<MatrixType,Dim,1> TranslationPart; | 
|  | /** corresponding translation type */ | 
|  | typedef Translation<Scalar,Dim> TranslationType; | 
|  |  | 
|  | protected: | 
|  |  | 
|  | MatrixType m_matrix; | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** Default constructor without initialization of the meaningfull coefficients. | 
|  | * If Mode==Affine, then the last row is set to [0 ... 0 1] */ | 
|  | inline Transform() | 
|  | { | 
|  | if (int(Mode)==Affine) | 
|  | makeAffine(); | 
|  | } | 
|  |  | 
|  | inline Transform(const Transform& other) | 
|  | { | 
|  | m_matrix = other.m_matrix; | 
|  | } | 
|  |  | 
|  | inline explicit Transform(const TranslationType& t) { *this = t; } | 
|  | inline explicit Transform(const UniformScaling<Scalar>& s) { *this = s; } | 
|  | template<typename Derived> | 
|  | inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; } | 
|  |  | 
|  | inline Transform& operator=(const Transform& other) | 
|  | { m_matrix = other.m_matrix; return *this; } | 
|  |  | 
|  | typedef ei_transform_take_affine_part<Transform> take_affine_part; | 
|  |  | 
|  | /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ | 
|  | template<typename OtherDerived> | 
|  | inline explicit Transform(const EigenBase<OtherDerived>& other) | 
|  | { | 
|  | ei_transform_construct_from_matrix<OtherDerived,Mode,Dim,HDim>::run(this, other.derived()); | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */ | 
|  | template<typename OtherDerived> | 
|  | inline Transform& operator=(const EigenBase<OtherDerived>& other) | 
|  | { | 
|  | ei_transform_construct_from_matrix<OtherDerived,Mode,Dim,HDim>::run(this, other.derived()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<int OtherMode> | 
|  | inline Transform(const Transform<Scalar,Dim,OtherMode>& other) | 
|  | { | 
|  | ei_assert(OtherMode!=Projective && "You cannot directly assign a projective transform to an affine one."); | 
|  | typedef typename Transform<Scalar,Dim,OtherMode>::MatrixType OtherMatrixType; | 
|  | ei_transform_construct_from_matrix<OtherMatrixType,Mode,Dim,HDim>::run(this, other.matrix()); | 
|  | } | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | Transform(const ReturnByValue<OtherDerived>& other) | 
|  | { | 
|  | other.evalTo(*this); | 
|  | } | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | Transform& operator=(const ReturnByValue<OtherDerived>& other) | 
|  | { | 
|  | other.evalTo(*this); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_QT_SUPPORT | 
|  | inline Transform(const QMatrix& other); | 
|  | inline Transform& operator=(const QMatrix& other); | 
|  | inline QMatrix toQMatrix(void) const; | 
|  | inline Transform(const QTransform& other); | 
|  | inline Transform& operator=(const QTransform& other); | 
|  | inline QTransform toQTransform(void) const; | 
|  | #endif | 
|  |  | 
|  | /** shortcut for m_matrix(row,col); | 
|  | * \sa MatrixBase::operaror(Index,Index) const */ | 
|  | inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); } | 
|  | /** shortcut for m_matrix(row,col); | 
|  | * \sa MatrixBase::operaror(Index,Index) */ | 
|  | inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); } | 
|  |  | 
|  | /** \returns a read-only expression of the transformation matrix */ | 
|  | inline const MatrixType& matrix() const { return m_matrix; } | 
|  | /** \returns a writable expression of the transformation matrix */ | 
|  | inline MatrixType& matrix() { return m_matrix; } | 
|  |  | 
|  | /** \returns a read-only expression of the linear part of the transformation */ | 
|  | inline const LinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); } | 
|  | /** \returns a writable expression of the linear part of the transformation */ | 
|  | inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); } | 
|  |  | 
|  | /** \returns a read-only expression of the Dim x HDim affine part of the transformation */ | 
|  | inline const AffinePart affine() const { return take_affine_part::run(m_matrix); } | 
|  | /** \returns a writable expression of the Dim x HDim affine part of the transformation */ | 
|  | inline AffinePart affine() { return take_affine_part::run(m_matrix); } | 
|  |  | 
|  | /** \returns a read-only expression of the translation vector of the transformation */ | 
|  | inline const TranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); } | 
|  | /** \returns a writable expression of the translation vector of the transformation */ | 
|  | inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); } | 
|  |  | 
|  | /** \returns an expression of the product between the transform \c *this and a matrix expression \a other | 
|  | * | 
|  | * The right hand side \a other might be either: | 
|  | * \li a vector of size Dim, | 
|  | * \li an homogeneous vector of size Dim+1, | 
|  | * \li a set of vectors of size Dim x Dynamic, | 
|  | * \li a set of homogeneous vectors of size Dim+1 x Dynamic, | 
|  | * \li a linear transformation matrix of size Dim x Dim, | 
|  | * \li an affine transformation matrix of size Dim x Dim+1, | 
|  | * \li a transformation matrix of size Dim+1 x Dim+1. | 
|  | */ | 
|  | // note: this function is defined here because some compilers cannot find the respective declaration | 
|  | template<typename OtherDerived> | 
|  | inline const typename ei_transform_right_product_impl<OtherDerived,Mode,_Dim,_Dim+1>::ResultType | 
|  | operator * (const EigenBase<OtherDerived> &other) const | 
|  | { return ei_transform_right_product_impl<OtherDerived,Mode,Dim,HDim>::run(*this,other.derived()); } | 
|  |  | 
|  | /** \returns the product expression of a transformation matrix \a a times a transform \a b | 
|  | * | 
|  | * The left hand side \a other might be either: | 
|  | * \li a linear transformation matrix of size Dim x Dim, | 
|  | * \li an affine transformation matrix of size Dim x Dim+1, | 
|  | * \li a general transformation matrix of size Dim+1 x Dim+1. | 
|  | */ | 
|  | template<typename OtherDerived> friend | 
|  | inline const typename ei_transform_left_product_impl<OtherDerived,Mode,_Dim,_Dim+1>::ResultType | 
|  | operator * (const EigenBase<OtherDerived> &a, const Transform &b) | 
|  | { return ei_transform_left_product_impl<OtherDerived,Mode,Dim,HDim>::run(a.derived(),b); } | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; } | 
|  |  | 
|  | /** Contatenates two transformations */ | 
|  | inline const Transform operator * (const Transform& other) const | 
|  | { | 
|  | return ei_transform_transform_product_impl<Transform,Transform>::run(*this,other); | 
|  | } | 
|  |  | 
|  | /** Contatenates two different transformations */ | 
|  | template<int OtherMode> | 
|  | inline const typename ei_transform_transform_product_impl< | 
|  | Transform,Transform<Scalar,Dim,OtherMode> >::ResultType | 
|  | operator * (const Transform<Scalar,Dim,OtherMode>& other) const | 
|  | { | 
|  | return ei_transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode> >::run(*this,other); | 
|  | } | 
|  |  | 
|  | /** \sa MatrixBase::setIdentity() */ | 
|  | void setIdentity() { m_matrix.setIdentity(); } | 
|  |  | 
|  | /** | 
|  | * \brief Returns an identity transformation. | 
|  | * \todo In the future this function should be returning a Transform expression. | 
|  | */ | 
|  | static const Transform Identity() | 
|  | { | 
|  | return Transform(MatrixType::Identity()); | 
|  | } | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& scale(const MatrixBase<OtherDerived> &other); | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& prescale(const MatrixBase<OtherDerived> &other); | 
|  |  | 
|  | inline Transform& scale(Scalar s); | 
|  | inline Transform& prescale(Scalar s); | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& translate(const MatrixBase<OtherDerived> &other); | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& pretranslate(const MatrixBase<OtherDerived> &other); | 
|  |  | 
|  | template<typename RotationType> | 
|  | inline Transform& rotate(const RotationType& rotation); | 
|  |  | 
|  | template<typename RotationType> | 
|  | inline Transform& prerotate(const RotationType& rotation); | 
|  |  | 
|  | Transform& shear(Scalar sx, Scalar sy); | 
|  | Transform& preshear(Scalar sx, Scalar sy); | 
|  |  | 
|  | inline Transform& operator=(const TranslationType& t); | 
|  | inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } | 
|  | inline Transform operator*(const TranslationType& t) const; | 
|  |  | 
|  | inline Transform& operator=(const UniformScaling<Scalar>& t); | 
|  | inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); } | 
|  | inline Transform operator*(const UniformScaling<Scalar>& s) const; | 
|  |  | 
|  | template<typename Derived> | 
|  | inline Transform& operator=(const RotationBase<Derived,Dim>& r); | 
|  | template<typename Derived> | 
|  | inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); } | 
|  | template<typename Derived> | 
|  | inline Transform operator*(const RotationBase<Derived,Dim>& r) const; | 
|  |  | 
|  | LinearMatrixType rotation() const; | 
|  | template<typename RotationMatrixType, typename ScalingMatrixType> | 
|  | void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; | 
|  | template<typename ScalingMatrixType, typename RotationMatrixType> | 
|  | void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; | 
|  |  | 
|  | template<typename PositionDerived, typename OrientationType, typename ScaleDerived> | 
|  | Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, | 
|  | const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale); | 
|  |  | 
|  | inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const; | 
|  |  | 
|  | /** \returns a const pointer to the column major internal matrix */ | 
|  | const Scalar* data() const { return m_matrix.data(); } | 
|  | /** \returns a non-const pointer to the column major internal matrix */ | 
|  | Scalar* data() { return m_matrix.data(); } | 
|  |  | 
|  | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|  | * | 
|  | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|  | * then this function smartly returns a const reference to \c *this. | 
|  | */ | 
|  | template<typename NewScalarType> | 
|  | inline typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim,Mode> >::type cast() const | 
|  | { return typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim,Mode> >::type(*this); } | 
|  |  | 
|  | /** Copy constructor with scalar type conversion */ | 
|  | template<typename OtherScalarType> | 
|  | inline explicit Transform(const Transform<OtherScalarType,Dim,Mode>& other) | 
|  | { m_matrix = other.matrix().template cast<Scalar>(); } | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \sa MatrixBase::isApprox() */ | 
|  | bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const | 
|  | { return m_matrix.isApprox(other.m_matrix, prec); } | 
|  |  | 
|  | /** Sets the last row to [0 ... 0 1] | 
|  | */ | 
|  | void makeAffine() | 
|  | { | 
|  | if(int(Mode)!=int(AffineCompact)) | 
|  | { | 
|  | matrix().template block<1,Dim>(Dim,0).setZero(); | 
|  | matrix().coeffRef(Dim,Dim) = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * \returns the Dim x Dim linear part if the transformation is affine, | 
|  | *          and the HDim x Dim part for projective transformations. | 
|  | */ | 
|  | inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() | 
|  | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } | 
|  | /** \internal | 
|  | * \returns the Dim x Dim linear part if the transformation is affine, | 
|  | *          and the HDim x Dim part for projective transformations. | 
|  | */ | 
|  | inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const | 
|  | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } | 
|  |  | 
|  | /** \internal | 
|  | * \returns the translation part if the transformation is affine, | 
|  | *          and the last column for projective transformations. | 
|  | */ | 
|  | inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() | 
|  | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } | 
|  | /** \internal | 
|  | * \returns the translation part if the transformation is affine, | 
|  | *          and the last column for projective transformations. | 
|  | */ | 
|  | inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const | 
|  | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } | 
|  |  | 
|  |  | 
|  | #ifdef EIGEN_TRANSFORM_PLUGIN | 
|  | #include EIGEN_TRANSFORM_PLUGIN | 
|  | #endif | 
|  |  | 
|  | }; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,2> Transform2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,3> Transform3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,2> Transform2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,3> Transform3d; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,2,Isometry> Isometry2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,3,Isometry> Isometry3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,2,Isometry> Isometry2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,3,Isometry> Isometry3d; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,2> Affine2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,3> Affine3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,2> Affine2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,3> Affine3d; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,2,AffineCompact> AffineCompact2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,3,AffineCompact> AffineCompact3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,2,AffineCompact> AffineCompact2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,3,AffineCompact> AffineCompact3d; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,2,Projective> Projective2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,3,Projective> Projective3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,2,Projective> Projective2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,3,Projective> Projective3d; | 
|  |  | 
|  | /************************** | 
|  | *** Optional QT support *** | 
|  | **************************/ | 
|  |  | 
|  | #ifdef EIGEN_QT_SUPPORT | 
|  | /** Initializes \c *this from a QMatrix assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | Transform<Scalar,Dim,Mode>::Transform(const QMatrix& other) | 
|  | { | 
|  | *this = other; | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a QMatrix assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const QMatrix& other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | m_matrix << other.m11(), other.m21(), other.dx(), | 
|  | other.m12(), other.m22(), other.dy(), | 
|  | 0, 0, 1; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns a QMatrix from \c *this assuming the dimension is 2. | 
|  | * | 
|  | * \warning this conversion might loss data if \c *this is not affine | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | QMatrix Transform<Scalar,Dim,Mode>::toQMatrix(void) const | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), | 
|  | m_matrix.coeff(0,1), m_matrix.coeff(1,1), | 
|  | m_matrix.coeff(0,2), m_matrix.coeff(1,2)); | 
|  | } | 
|  |  | 
|  | /** Initializes \c *this from a QTransform assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | Transform<Scalar,Dim,Mode>::Transform(const QTransform& other) | 
|  | { | 
|  | *this = other; | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a QTransform assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const QTransform& other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | m_matrix << other.m11(), other.m21(), other.dx(), | 
|  | other.m12(), other.m22(), other.dy(), | 
|  | other.m13(), other.m23(), other.m33(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns a QTransform from \c *this assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | QTransform Transform<Scalar,Dim,Mode>::toQTransform(void) const | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | return QTransform(matrix.coeff(0,0), matrix.coeff(1,0), matrix.coeff(2,0) | 
|  | matrix.coeff(0,1), matrix.coeff(1,1), matrix.coeff(2,1) | 
|  | matrix.coeff(0,2), matrix.coeff(1,2), matrix.coeff(2,2)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /********************* | 
|  | *** Procedural API *** | 
|  | *********************/ | 
|  |  | 
|  | /** Applies on the right the non uniform scale transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \sa prescale() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | template<typename OtherDerived> | 
|  | Transform<Scalar,Dim,Mode>& | 
|  | Transform<Scalar,Dim,Mode>::scale(const MatrixBase<OtherDerived> &other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|  | linearExt().noalias() = (linearExt() * other.asDiagonal()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right a uniform scale of a factor \a c to \c *this | 
|  | * and returns a reference to \c *this. | 
|  | * \sa prescale(Scalar) | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::scale(Scalar s) | 
|  | { | 
|  | linearExt() *= s; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the non uniform scale transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \sa scale() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | template<typename OtherDerived> | 
|  | Transform<Scalar,Dim,Mode>& | 
|  | Transform<Scalar,Dim,Mode>::prescale(const MatrixBase<OtherDerived> &other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|  | m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left a uniform scale of a factor \a c to \c *this | 
|  | * and returns a reference to \c *this. | 
|  | * \sa scale(Scalar) | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::prescale(Scalar s) | 
|  | { | 
|  | m_matrix.template topRows<Dim>() *= s; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right the translation matrix represented by the vector \a other | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * \sa pretranslate() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | template<typename OtherDerived> | 
|  | Transform<Scalar,Dim,Mode>& | 
|  | Transform<Scalar,Dim,Mode>::translate(const MatrixBase<OtherDerived> &other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|  | translationExt() += linearExt() * other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the translation matrix represented by the vector \a other | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * \sa translate() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | template<typename OtherDerived> | 
|  | Transform<Scalar,Dim,Mode>& | 
|  | Transform<Scalar,Dim,Mode>::pretranslate(const MatrixBase<OtherDerived> &other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|  | if(int(Mode)==int(Projective)) | 
|  | affine() += other * m_matrix.row(Dim); | 
|  | else | 
|  | translation() += other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right the rotation represented by the rotation \a rotation | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * | 
|  | * The template parameter \a RotationType is the type of the rotation which | 
|  | * must be known by ei_toRotationMatrix<>. | 
|  | * | 
|  | * Natively supported types includes: | 
|  | *   - any scalar (2D), | 
|  | *   - a Dim x Dim matrix expression, | 
|  | *   - a Quaternion (3D), | 
|  | *   - a AngleAxis (3D) | 
|  | * | 
|  | * This mechanism is easily extendable to support user types such as Euler angles, | 
|  | * or a pair of Quaternion for 4D rotations. | 
|  | * | 
|  | * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | template<typename RotationType> | 
|  | Transform<Scalar,Dim,Mode>& | 
|  | Transform<Scalar,Dim,Mode>::rotate(const RotationType& rotation) | 
|  | { | 
|  | linearExt() *= ei_toRotationMatrix<Scalar,Dim>(rotation); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the rotation represented by the rotation \a rotation | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * | 
|  | * See rotate() for further details. | 
|  | * | 
|  | * \sa rotate() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | template<typename RotationType> | 
|  | Transform<Scalar,Dim,Mode>& | 
|  | Transform<Scalar,Dim,Mode>::prerotate(const RotationType& rotation) | 
|  | { | 
|  | m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation) | 
|  | * m_matrix.template block<Dim,HDim>(0,0); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right the shear transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \warning 2D only. | 
|  | * \sa preshear() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | Transform<Scalar,Dim,Mode>& | 
|  | Transform<Scalar,Dim,Mode>::shear(Scalar sx, Scalar sy) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | VectorType tmp = linear().col(0)*sy + linear().col(1); | 
|  | linear() << linear().col(0) + linear().col(1)*sx, tmp; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the shear transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \warning 2D only. | 
|  | * \sa shear() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | Transform<Scalar,Dim,Mode>& | 
|  | Transform<Scalar,Dim,Mode>::preshear(Scalar sx, Scalar sy) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /****************************************************** | 
|  | *** Scaling, Translation and Rotation compatibility *** | 
|  | ******************************************************/ | 
|  |  | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const TranslationType& t) | 
|  | { | 
|  | linear().setIdentity(); | 
|  | translation() = t.vector(); | 
|  | makeAffine(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | inline Transform<Scalar,Dim,Mode> Transform<Scalar,Dim,Mode>::operator*(const TranslationType& t) const | 
|  | { | 
|  | Transform res = *this; | 
|  | res.translate(t.vector()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const UniformScaling<Scalar>& s) | 
|  | { | 
|  | m_matrix.setZero(); | 
|  | linear().diagonal().fill(s.factor()); | 
|  | makeAffine(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | inline Transform<Scalar,Dim,Mode> Transform<Scalar,Dim,Mode>::operator*(const UniformScaling<Scalar>& s) const | 
|  | { | 
|  | Transform res = *this; | 
|  | res.scale(s.factor()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | template<typename Derived> | 
|  | inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const RotationBase<Derived,Dim>& r) | 
|  | { | 
|  | linear() = ei_toRotationMatrix<Scalar,Dim>(r); | 
|  | translation().setZero(); | 
|  | makeAffine(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | template<typename Derived> | 
|  | inline Transform<Scalar,Dim,Mode> Transform<Scalar,Dim,Mode>::operator*(const RotationBase<Derived,Dim>& r) const | 
|  | { | 
|  | Transform res = *this; | 
|  | res.rotate(r.derived()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /************************ | 
|  | *** Special functions *** | 
|  | ************************/ | 
|  |  | 
|  | /** \returns the rotation part of the transformation | 
|  | * \nonstableyet | 
|  | * | 
|  | * \svd_module | 
|  | * | 
|  | * \sa computeRotationScaling(), computeScalingRotation(), class SVD | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | typename Transform<Scalar,Dim,Mode>::LinearMatrixType | 
|  | Transform<Scalar,Dim,Mode>::rotation() const | 
|  | { | 
|  | LinearMatrixType result; | 
|  | computeRotationScaling(&result, (LinearMatrixType*)0); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being | 
|  | * not necessarily positive. | 
|  | * | 
|  | * If either pointer is zero, the corresponding computation is skipped. | 
|  | * | 
|  | * \nonstableyet | 
|  | * | 
|  | * \svd_module | 
|  | * | 
|  | * \sa computeScalingRotation(), rotation(), class SVD | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | template<typename RotationMatrixType, typename ScalingMatrixType> | 
|  | void Transform<Scalar,Dim,Mode>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const | 
|  | { | 
|  | linear().svd().computeRotationScaling(rotation, scaling); | 
|  | } | 
|  |  | 
|  | /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being | 
|  | * not necessarily positive. | 
|  | * | 
|  | * If either pointer is zero, the corresponding computation is skipped. | 
|  | * | 
|  | * \nonstableyet | 
|  | * | 
|  | * \svd_module | 
|  | * | 
|  | * \sa computeRotationScaling(), rotation(), class SVD | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | template<typename ScalingMatrixType, typename RotationMatrixType> | 
|  | void Transform<Scalar,Dim,Mode>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const | 
|  | { | 
|  | linear().svd().computeScalingRotation(scaling, rotation); | 
|  | } | 
|  |  | 
|  | /** Convenient method to set \c *this from a position, orientation and scale | 
|  | * of a 3D object. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | template<typename PositionDerived, typename OrientationType, typename ScaleDerived> | 
|  | Transform<Scalar,Dim,Mode>& | 
|  | Transform<Scalar,Dim,Mode>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, | 
|  | const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale) | 
|  | { | 
|  | linear() = ei_toRotationMatrix<Scalar,Dim>(orientation); | 
|  | linear() *= scale.asDiagonal(); | 
|  | translation() = position; | 
|  | makeAffine(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // selector needed to avoid taking the inverse of a 3x4 matrix | 
|  | template<typename TransformType, int Mode=TransformType::Mode> | 
|  | struct ei_projective_transform_inverse | 
|  | { | 
|  | static inline void run(const TransformType&, TransformType&) | 
|  | {} | 
|  | }; | 
|  |  | 
|  | template<typename TransformType> | 
|  | struct ei_projective_transform_inverse<TransformType, Projective> | 
|  | { | 
|  | static inline void run(const TransformType& m, TransformType& res) | 
|  | { | 
|  | res.matrix() = m.matrix().inverse(); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** \nonstableyet | 
|  | * | 
|  | * \returns the inverse transformation according to some given knowledge | 
|  | * on \c *this. | 
|  | * | 
|  | * \param traits allows to optimize the inversion process when the transformation | 
|  | * is known to be not a general transformation. The possible values are: | 
|  | *  - Projective if the transformation is not necessarily affine, i.e., if the | 
|  | *    last row is not guaranteed to be [0 ... 0 1] | 
|  | *  - Affine is the default, the last row is assumed to be [0 ... 0 1] | 
|  | *  - Isometry if the transformation is only a concatenations of translations | 
|  | *    and rotations. | 
|  | * | 
|  | * \warning unless \a traits is always set to NoShear or NoScaling, this function | 
|  | * requires the generic inverse method of MatrixBase defined in the LU module. If | 
|  | * you forget to include this module, then you will get hard to debug linking errors. | 
|  | * | 
|  | * \sa MatrixBase::inverse() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | Transform<Scalar,Dim,Mode> | 
|  | Transform<Scalar,Dim,Mode>::inverse(TransformTraits hint) const | 
|  | { | 
|  | Transform res; | 
|  | if (hint == Projective) | 
|  | { | 
|  | ei_projective_transform_inverse<Transform>::run(*this, res); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (hint == Isometry) | 
|  | { | 
|  | res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose(); | 
|  | } | 
|  | else if(hint&Affine) | 
|  | { | 
|  | res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse(); | 
|  | } | 
|  | else | 
|  | { | 
|  | ei_assert(false && "Invalid transform traits in Transform::Inverse"); | 
|  | } | 
|  | // translation and remaining parts | 
|  | res.matrix().template topRightCorner<Dim,1>() | 
|  | = - res.matrix().template topLeftCorner<Dim,Dim>() * translation(); | 
|  | if(int(Mode)!=int(AffineCompact)) | 
|  | { | 
|  | res.matrix().template block<1,Dim>(Dim,0).setZero(); | 
|  | res.matrix().coeffRef(Dim,Dim) = 1; | 
|  | } | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /***************************************************** | 
|  | *** Specializations of take affine part            *** | 
|  | *****************************************************/ | 
|  |  | 
|  | template<typename TransformType> struct ei_transform_take_affine_part { | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef typename TransformType::AffinePart AffinePart; | 
|  | static inline AffinePart run(MatrixType& m) | 
|  | { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } | 
|  | static inline const AffinePart run(const MatrixType& m) | 
|  | { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar, int Dim> | 
|  | struct ei_transform_take_affine_part<Transform<Scalar,Dim,AffineCompact> > { | 
|  | typedef typename Transform<Scalar,Dim,AffineCompact>::MatrixType MatrixType; | 
|  | static inline MatrixType& run(MatrixType& m) { return m; } | 
|  | static inline const MatrixType& run(const MatrixType& m) { return m; } | 
|  | }; | 
|  |  | 
|  | /***************************************************** | 
|  | *** Specializations of construct from matrix       *** | 
|  | *****************************************************/ | 
|  |  | 
|  | template<typename Other, int Mode, int Dim, int HDim> | 
|  | struct ei_transform_construct_from_matrix<Other, Mode,Dim,HDim, Dim,Dim> | 
|  | { | 
|  | static inline void run(Transform<typename Other::Scalar,Dim,Mode> *transform, const Other& other) | 
|  | { | 
|  | transform->linear() = other; | 
|  | transform->translation().setZero(); | 
|  | transform->makeAffine(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Other, int Mode, int Dim, int HDim> | 
|  | struct ei_transform_construct_from_matrix<Other, Mode,Dim,HDim, Dim,HDim> | 
|  | { | 
|  | static inline void run(Transform<typename Other::Scalar,Dim,Mode> *transform, const Other& other) | 
|  | { | 
|  | transform->affine() = other; | 
|  | transform->makeAffine(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Other, int Mode, int Dim, int HDim> | 
|  | struct ei_transform_construct_from_matrix<Other, Mode,Dim,HDim, HDim,HDim> | 
|  | { | 
|  | static inline void run(Transform<typename Other::Scalar,Dim,Mode> *transform, const Other& other) | 
|  | { transform->matrix() = other; } | 
|  | }; | 
|  |  | 
|  | template<typename Other, int Dim, int HDim> | 
|  | struct ei_transform_construct_from_matrix<Other, AffineCompact,Dim,HDim, HDim,HDim> | 
|  | { | 
|  | static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact> *transform, const Other& other) | 
|  | { transform->matrix() = other.template block<Dim,HDim>(0,0); } | 
|  | }; | 
|  |  | 
|  | /********************************************************* | 
|  | *** Specializations of operator* with a EigenBase *** | 
|  | *********************************************************/ | 
|  |  | 
|  | // ei_general_product_return_type is a generalization of ProductReturnType, for all types (including e.g. DiagonalBase...), | 
|  | // instead of being restricted to MatrixBase. | 
|  | template<typename Lhs, typename Rhs> struct ei_general_product_return_type; | 
|  | template<typename D1, typename D2> struct ei_general_product_return_type<MatrixBase<D1>, MatrixBase<D2> > | 
|  | : ProductReturnType<D1,D2> {}; | 
|  | template<typename Lhs, typename D2> struct ei_general_product_return_type<Lhs, MatrixBase<D2> > | 
|  | { typedef D2 Type; }; | 
|  | template<typename D1, typename Rhs> struct ei_general_product_return_type<MatrixBase<D1>, Rhs > | 
|  | { typedef D1 Type; }; | 
|  |  | 
|  |  | 
|  |  | 
|  | // Projective * set of homogeneous column vectors | 
|  | template<typename Other, int Dim, int HDim> | 
|  | struct ei_transform_right_product_impl<Other,Projective, Dim,HDim, HDim, Dynamic> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Projective> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef typename ProductReturnType<MatrixType,Other>::Type ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { return tr.matrix() * other; } | 
|  | }; | 
|  |  | 
|  | // Projective * homogeneous column vector | 
|  | template<typename Other, int Dim, int HDim> | 
|  | struct ei_transform_right_product_impl<Other,Projective, Dim,HDim, HDim, 1> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Projective> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef typename ProductReturnType<MatrixType,Other>::Type ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { return tr.matrix() * other; } | 
|  | }; | 
|  |  | 
|  | // Projective * column vector | 
|  | template<typename Other, int Dim, int HDim> | 
|  | struct ei_transform_right_product_impl<Other,Projective, Dim,HDim, Dim, 1> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Projective> TransformType; | 
|  | typedef Matrix<typename Other::Scalar,HDim,1> ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { return tr.matrix().template block<HDim,Dim>(0,0) * other + tr.matrix().col(Dim); } | 
|  | }; | 
|  |  | 
|  | // Affine *  column vector | 
|  | template<typename Other, int Mode, int Dim, int HDim> | 
|  | struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, Dim,1> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; | 
|  | typedef Matrix<typename Other::Scalar,Dim,1> ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { return tr.linear() * other + tr.translation(); } | 
|  | }; | 
|  |  | 
|  | // Affine *  set of column vectors | 
|  | // FIXME use a ReturnByValue to remove the temporary | 
|  | template<typename Other, int Mode, int Dim, int HDim> | 
|  | struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, Dim,Dynamic> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; | 
|  | typedef Matrix<typename Other::Scalar,Dim,Dynamic> ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { return (tr.linear() * other).colwise() + tr.translation(); } | 
|  | }; | 
|  |  | 
|  | // Affine *  homogeneous column vector | 
|  | // FIXME added for backward compatibility, but I'm not sure we should keep it | 
|  | template<typename Other, int Mode, int Dim, int HDim> | 
|  | struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, HDim,1> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; | 
|  | typedef Matrix<typename Other::Scalar,HDim,1> ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { return tr.matrix() * other; } | 
|  | }; | 
|  | template<typename Other, int Dim, int HDim> | 
|  | struct ei_transform_right_product_impl<Other,AffineCompact, Dim,HDim, HDim,1> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,AffineCompact> TransformType; | 
|  | typedef Matrix<typename Other::Scalar,HDim,1> ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { | 
|  | ResultType res; | 
|  | res.template head<HDim>() = tr.matrix() * other; | 
|  | res.coeffRef(Dim) = other.coeff(Dim); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // T * linear matrix => T | 
|  | template<typename Other, int Mode, int Dim, int HDim> | 
|  | struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, Dim,Dim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef TransformType ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { | 
|  | TransformType res; | 
|  | res.matrix().col(Dim) = tr.matrix().col(Dim); | 
|  | res.linearExt().noalias() = (tr.linearExt() * other); | 
|  | if(Mode==Affine) | 
|  | res.matrix().row(Dim).template head<Dim>() = tr.matrix().row(Dim).template head<Dim>(); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // T * affine matrix => T | 
|  | template<typename Other, int Mode, int Dim, int HDim> | 
|  | struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, Dim,HDim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef TransformType ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { | 
|  | TransformType res; | 
|  | enum { Rows = Mode==Projective ? HDim : Dim }; | 
|  | res.matrix().template block<Rows,HDim>(0,0).noalias() = (tr.linearExt() * other); | 
|  | res.translationExt() += tr.translationExt(); | 
|  | if(Mode!=Affine) | 
|  | res.makeAffine(); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // T * generic matrix => Projective | 
|  | template<typename Other, int Mode, int Dim, int HDim> | 
|  | struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, HDim,HDim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef Transform<typename Other::Scalar,Dim,Projective> ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { return ResultType(tr.matrix() * other); } | 
|  | }; | 
|  |  | 
|  | // AffineCompact * generic matrix => Projective | 
|  | template<typename Other, int Dim, int HDim> | 
|  | struct ei_transform_right_product_impl<Other,AffineCompact, Dim,HDim, HDim,HDim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,AffineCompact> TransformType; | 
|  | typedef Transform<typename Other::Scalar,Dim,Projective> ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { | 
|  | ResultType res; | 
|  | res.affine().noalias() = tr.matrix() * other; | 
|  | res.makeAffine(); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | // generic HDim x HDim matrix * T => Projective | 
|  | template<typename Other,int Mode, int Dim, int HDim> | 
|  | struct ei_transform_left_product_impl<Other,Mode,Dim,HDim, HDim,HDim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef Transform<typename Other::Scalar,Dim,Projective> ResultType; | 
|  | static ResultType run(const Other& other,const TransformType& tr) | 
|  | { return ResultType(other * tr.matrix()); } | 
|  | }; | 
|  |  | 
|  | // generic HDim x HDim matrix * AffineCompact => Projective | 
|  | template<typename Other, int Dim, int HDim> | 
|  | struct ei_transform_left_product_impl<Other,AffineCompact,Dim,HDim, HDim,HDim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,AffineCompact> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef Transform<typename Other::Scalar,Dim,Projective> ResultType; | 
|  | static ResultType run(const Other& other,const TransformType& tr) | 
|  | { | 
|  | ResultType res; | 
|  | res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix(); | 
|  | res.matrix().col(Dim) += other.col(Dim); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // affine matrix * T | 
|  | template<typename Other,int Mode, int Dim, int HDim> | 
|  | struct ei_transform_left_product_impl<Other,Mode,Dim,HDim, Dim,HDim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef TransformType ResultType; | 
|  | static ResultType run(const Other& other,const TransformType& tr) | 
|  | { | 
|  | ResultType res; | 
|  | res.affine().noalias() = other * tr.matrix(); | 
|  | res.matrix().row(Dim) = tr.matrix().row(Dim); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // affine matrix * AffineCompact | 
|  | template<typename Other, int Dim, int HDim> | 
|  | struct ei_transform_left_product_impl<Other,AffineCompact,Dim,HDim, Dim,HDim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,AffineCompact> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef TransformType ResultType; | 
|  | static ResultType run(const Other& other,const TransformType& tr) | 
|  | { | 
|  | ResultType res; | 
|  | res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix(); | 
|  | res.translation() += other.col(Dim); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // linear matrix * T | 
|  | template<typename Other,int Mode, int Dim, int HDim> | 
|  | struct ei_transform_left_product_impl<Other,Mode,Dim,HDim, Dim,Dim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef TransformType ResultType; | 
|  | static ResultType run(const Other& other, const TransformType& tr) | 
|  | { | 
|  | TransformType res; | 
|  | if(Mode!=AffineCompact) | 
|  | res.matrix().row(Dim) = tr.matrix().row(Dim); | 
|  | res.matrix().template topRows<Dim>().noalias() | 
|  | = other * tr.matrix().template topRows<Dim>(); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /********************************************************** | 
|  | *** Specializations of operator* with another Transform *** | 
|  | **********************************************************/ | 
|  |  | 
|  | template<typename Scalar, int Dim, int Mode> | 
|  | struct ei_transform_transform_product_impl<Transform<Scalar,Dim,Mode>,Transform<Scalar,Dim,Mode> > | 
|  | { | 
|  | typedef Transform<Scalar,Dim,Mode> TransformType; | 
|  | typedef TransformType ResultType; | 
|  | static ResultType run(const TransformType& lhs, const TransformType& rhs) | 
|  | { | 
|  | return ResultType(lhs.matrix() * rhs.matrix()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar, int Dim> | 
|  | struct ei_transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact>,Transform<Scalar,Dim,AffineCompact> > | 
|  | { | 
|  | typedef Transform<Scalar,Dim,AffineCompact> TransformType; | 
|  | typedef TransformType ResultType; | 
|  | static ResultType run(const TransformType& lhs, const TransformType& rhs) | 
|  | { | 
|  | return ei_transform_right_product_impl<typename TransformType::MatrixType, | 
|  | AffineCompact,Dim,Dim+1>::run(lhs,rhs.matrix()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar, int Dim, int LhsMode, int RhsMode> | 
|  | struct ei_transform_transform_product_impl<Transform<Scalar,Dim,LhsMode>,Transform<Scalar,Dim,RhsMode> > | 
|  | { | 
|  | typedef Transform<Scalar,Dim,LhsMode> Lhs; | 
|  | typedef Transform<Scalar,Dim,RhsMode> Rhs; | 
|  | typedef typename ei_transform_right_product_impl<typename Rhs::MatrixType, | 
|  | LhsMode,Dim,Dim+1>::ResultType ResultType; | 
|  | static ResultType run(const Lhs& lhs, const Rhs& rhs) | 
|  | { | 
|  | return ei_transform_right_product_impl<typename Rhs::MatrixType,LhsMode,Dim,Dim+1>::run(lhs,rhs.matrix()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar, int Dim> | 
|  | struct ei_transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact>, | 
|  | Transform<Scalar,Dim,Affine> > | 
|  | { | 
|  | typedef Transform<Scalar,Dim,AffineCompact> Lhs; | 
|  | typedef Transform<Scalar,Dim,Affine> Rhs; | 
|  | typedef Transform<Scalar,Dim,AffineCompact> ResultType; | 
|  | static ResultType run(const Lhs& lhs, const Rhs& rhs) | 
|  | { | 
|  | return ResultType(lhs.matrix() * rhs.matrix()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | #endif // EIGEN_TRANSFORM_H |