| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #ifndef EIGEN_LLT_H | 
 | #define EIGEN_LLT_H | 
 |  | 
 | template<typename MatrixType, int UpLo> struct LLT_Traits; | 
 |  | 
 | /** \ingroup cholesky_Module | 
 |   * | 
 |   * \class LLT | 
 |   * | 
 |   * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features | 
 |   * | 
 |   * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition | 
 |   * | 
 |   * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite | 
 |   * matrix A such that A = LL^* = U^*U, where L is lower triangular. | 
 |   * | 
 |   * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like  D^*D x = b, | 
 |   * for that purpose, we recommend the Cholesky decomposition without square root which is more stable | 
 |   * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other | 
 |   * situations like generalised eigen problems with hermitian matrices. | 
 |   * | 
 |   * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, | 
 |   * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations | 
 |   * has a solution. | 
 |   * | 
 |   * \sa MatrixBase::llt(), class LDLT | 
 |   */ | 
 |  /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH) | 
 |   * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, | 
 |   * the strict lower part does not have to store correct values. | 
 |   */ | 
 | template<typename _MatrixType, int _UpLo> class LLT | 
 | { | 
 |   public: | 
 |     typedef _MatrixType MatrixType; | 
 |     enum { | 
 |       RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |       ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |       Options = MatrixType::Options, | 
 |       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |     }; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
 |     typedef typename MatrixType::Index Index; | 
 |  | 
 |     enum { | 
 |       PacketSize = ei_packet_traits<Scalar>::size, | 
 |       AlignmentMask = int(PacketSize)-1, | 
 |       UpLo = _UpLo | 
 |     }; | 
 |  | 
 |     typedef LLT_Traits<MatrixType,UpLo> Traits; | 
 |  | 
 |     /** | 
 |     * \brief Default Constructor. | 
 |     * | 
 |     * The default constructor is useful in cases in which the user intends to | 
 |     * perform decompositions via LLT::compute(const MatrixType&). | 
 |     */ | 
 |     LLT() : m_matrix(), m_isInitialized(false) {} | 
 |  | 
 |     /** \brief Default Constructor with memory preallocation | 
 |       * | 
 |       * Like the default constructor but with preallocation of the internal data | 
 |       * according to the specified problem \a size. | 
 |       * \sa LLT() | 
 |       */ | 
 |     LLT(Index size) : m_matrix(size, size), | 
 |                     m_isInitialized(false) {} | 
 |  | 
 |     LLT(const MatrixType& matrix) | 
 |       : m_matrix(matrix.rows(), matrix.cols()), | 
 |         m_isInitialized(false) | 
 |     { | 
 |       compute(matrix); | 
 |     } | 
 |  | 
 |     /** \returns a view of the upper triangular matrix U */ | 
 |     inline typename Traits::MatrixU matrixU() const | 
 |     { | 
 |       ei_assert(m_isInitialized && "LLT is not initialized."); | 
 |       return Traits::getU(m_matrix); | 
 |     } | 
 |  | 
 |     /** \returns a view of the lower triangular matrix L */ | 
 |     inline typename Traits::MatrixL matrixL() const | 
 |     { | 
 |       ei_assert(m_isInitialized && "LLT is not initialized."); | 
 |       return Traits::getL(m_matrix); | 
 |     } | 
 |  | 
 |     /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. | 
 |       * | 
 |       * Since this LLT class assumes anyway that the matrix A is invertible, the solution | 
 |       * theoretically exists and is unique regardless of b. | 
 |       * | 
 |       * Example: \include LLT_solve.cpp | 
 |       * Output: \verbinclude LLT_solve.out | 
 |       * | 
 |       * \sa solveInPlace(), MatrixBase::llt() | 
 |       */ | 
 |     template<typename Rhs> | 
 |     inline const ei_solve_retval<LLT, Rhs> | 
 |     solve(const MatrixBase<Rhs>& b) const | 
 |     { | 
 |       ei_assert(m_isInitialized && "LLT is not initialized."); | 
 |       ei_assert(m_matrix.rows()==b.rows() | 
 |                 && "LLT::solve(): invalid number of rows of the right hand side matrix b"); | 
 |       return ei_solve_retval<LLT, Rhs>(*this, b.derived()); | 
 |     } | 
 |  | 
 |     template<typename Derived> | 
 |     bool solveInPlace(MatrixBase<Derived> &bAndX) const; | 
 |  | 
 |     LLT& compute(const MatrixType& matrix); | 
 |  | 
 |     /** \returns the LLT decomposition matrix | 
 |       * | 
 |       * TODO: document the storage layout | 
 |       */ | 
 |     inline const MatrixType& matrixLLT() const | 
 |     { | 
 |       ei_assert(m_isInitialized && "LLT is not initialized."); | 
 |       return m_matrix; | 
 |     } | 
 |  | 
 |     MatrixType reconstructedMatrix() const; | 
 |  | 
 |  | 
 |     /** \brief Reports whether previous computation was successful. | 
 |       * | 
 |       * \returns \c Success if computation was succesful, | 
 |       *          \c NumericalIssue if the matrix.appears to be negative. | 
 |       */ | 
 |     ComputationInfo info() const | 
 |     { | 
 |       ei_assert(m_isInitialized && "LLT is not initialized."); | 
 |       return m_info; | 
 |     } | 
 |  | 
 |     inline Index rows() const { return m_matrix.rows(); } | 
 |     inline Index cols() const { return m_matrix.cols(); } | 
 |  | 
 |   protected: | 
 |     /** \internal | 
 |       * Used to compute and store L | 
 |       * The strict upper part is not used and even not initialized. | 
 |       */ | 
 |     MatrixType m_matrix; | 
 |     bool m_isInitialized; | 
 |     ComputationInfo m_info; | 
 | }; | 
 |  | 
 | template<int UpLo> struct ei_llt_inplace; | 
 |  | 
 | template<> struct ei_llt_inplace<Lower> | 
 | { | 
 |   template<typename MatrixType> | 
 |   static bool unblocked(MatrixType& mat) | 
 |   { | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |     typedef typename MatrixType::Index Index; | 
 |     ei_assert(mat.rows()==mat.cols()); | 
 |     const Index size = mat.rows(); | 
 |     for(Index k = 0; k < size; ++k) | 
 |     { | 
 |       Index rs = size-k-1; // remaining size | 
 |  | 
 |       Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); | 
 |       Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); | 
 |       Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); | 
 |  | 
 |       RealScalar x = ei_real(mat.coeff(k,k)); | 
 |       if (k>0) x -= mat.row(k).head(k).squaredNorm(); | 
 |       if (x<=RealScalar(0)) | 
 |         return false; | 
 |       mat.coeffRef(k,k) = x = ei_sqrt(x); | 
 |       if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); | 
 |       if (rs>0) A21 *= RealScalar(1)/x; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   template<typename MatrixType> | 
 |   static bool blocked(MatrixType& m) | 
 |   { | 
 |     typedef typename MatrixType::Index Index; | 
 |     ei_assert(m.rows()==m.cols()); | 
 |     Index size = m.rows(); | 
 |     if(size<32) | 
 |       return unblocked(m); | 
 |  | 
 |     Index blockSize = size/8; | 
 |     blockSize = (blockSize/16)*16; | 
 |     blockSize = std::min(std::max(blockSize,Index(8)), Index(128)); | 
 |  | 
 |     for (Index k=0; k<size; k+=blockSize) | 
 |     { | 
 |       // partition the matrix: | 
 |       //       A00 |  -  |  - | 
 |       // lu  = A10 | A11 |  - | 
 |       //       A20 | A21 | A22 | 
 |       Index bs = std::min(blockSize, size-k); | 
 |       Index rs = size - k - bs; | 
 |       Block<MatrixType,Dynamic,Dynamic> A11(m,k,   k,   bs,bs); | 
 |       Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k,   rs,bs); | 
 |       Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); | 
 |  | 
 |       if(!unblocked(A11)) return false; | 
 |       if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); | 
 |       if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck | 
 |     } | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | template<> struct ei_llt_inplace<Upper> | 
 | { | 
 |   template<typename MatrixType> | 
 |   static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat) | 
 |   { | 
 |     Transpose<MatrixType> matt(mat); | 
 |     return ei_llt_inplace<Lower>::unblocked(matt); | 
 |   } | 
 |   template<typename MatrixType> | 
 |   static EIGEN_STRONG_INLINE bool blocked(MatrixType& mat) | 
 |   { | 
 |     Transpose<MatrixType> matt(mat); | 
 |     return ei_llt_inplace<Lower>::blocked(matt); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> | 
 | { | 
 |   typedef TriangularView<MatrixType, Lower> MatrixL; | 
 |   typedef TriangularView<typename MatrixType::AdjointReturnType, Upper> MatrixU; | 
 |   inline static MatrixL getL(const MatrixType& m) { return m; } | 
 |   inline static MatrixU getU(const MatrixType& m) { return m.adjoint(); } | 
 |   static bool inplace_decomposition(MatrixType& m) | 
 |   { return ei_llt_inplace<Lower>::blocked(m); } | 
 | }; | 
 |  | 
 | template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> | 
 | { | 
 |   typedef TriangularView<typename MatrixType::AdjointReturnType, Lower> MatrixL; | 
 |   typedef TriangularView<MatrixType, Upper> MatrixU; | 
 |   inline static MatrixL getL(const MatrixType& m) { return m.adjoint(); } | 
 |   inline static MatrixU getU(const MatrixType& m) { return m; } | 
 |   static bool inplace_decomposition(MatrixType& m) | 
 |   { return ei_llt_inplace<Upper>::blocked(m); } | 
 | }; | 
 |  | 
 | /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix | 
 |   * | 
 |   * | 
 |   * \returns a reference to *this | 
 |   */ | 
 | template<typename MatrixType, int _UpLo> | 
 | LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a) | 
 | { | 
 |   assert(a.rows()==a.cols()); | 
 |   const Index size = a.rows(); | 
 |   m_matrix.resize(size, size); | 
 |   m_matrix = a; | 
 |  | 
 |   m_isInitialized = true; | 
 |   bool ok = Traits::inplace_decomposition(m_matrix); | 
 |   m_info = ok ? Success : NumericalIssue; | 
 |  | 
 |   return *this; | 
 | } | 
 |  | 
 | template<typename _MatrixType, int UpLo, typename Rhs> | 
 | struct ei_solve_retval<LLT<_MatrixType, UpLo>, Rhs> | 
 |   : ei_solve_retval_base<LLT<_MatrixType, UpLo>, Rhs> | 
 | { | 
 |   typedef LLT<_MatrixType,UpLo> LLTType; | 
 |   EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs) | 
 |  | 
 |   template<typename Dest> void evalTo(Dest& dst) const | 
 |   { | 
 |     dst = rhs(); | 
 |     dec().solveInPlace(dst); | 
 |   } | 
 | }; | 
 |  | 
 | /** This is the \em in-place version of solve(). | 
 |   * | 
 |   * \param bAndX represents both the right-hand side matrix b and result x. | 
 |   * | 
 |   * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. | 
 |   * | 
 |   * This version avoids a copy when the right hand side matrix b is not | 
 |   * needed anymore. | 
 |   * | 
 |   * \sa LLT::solve(), MatrixBase::llt() | 
 |   */ | 
 | template<typename MatrixType, int _UpLo> | 
 | template<typename Derived> | 
 | bool LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const | 
 | { | 
 |   ei_assert(m_isInitialized && "LLT is not initialized."); | 
 |   ei_assert(m_matrix.rows()==bAndX.rows()); | 
 |   matrixL().solveInPlace(bAndX); | 
 |   matrixU().solveInPlace(bAndX); | 
 |   return true; | 
 | } | 
 |  | 
 | /** \returns the matrix represented by the decomposition, | 
 |  * i.e., it returns the product: L L^*. | 
 |  * This function is provided for debug purpose. */ | 
 | template<typename MatrixType, int _UpLo> | 
 | MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const | 
 | { | 
 |   ei_assert(m_isInitialized && "LLT is not initialized."); | 
 |   return matrixL() * matrixL().adjoint().toDenseMatrix(); | 
 | } | 
 |  | 
 | /** \cholesky_module | 
 |   * \returns the LLT decomposition of \c *this | 
 |   */ | 
 | template<typename Derived> | 
 | inline const LLT<typename MatrixBase<Derived>::PlainObject> | 
 | MatrixBase<Derived>::llt() const | 
 | { | 
 |   return LLT<PlainObject>(derived()); | 
 | } | 
 |  | 
 | /** \cholesky_module | 
 |   * \returns the LLT decomposition of \c *this | 
 |   */ | 
 | template<typename MatrixType, unsigned int UpLo> | 
 | inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> | 
 | SelfAdjointView<MatrixType, UpLo>::llt() const | 
 | { | 
 |   return LLT<PlainObject,UpLo>(m_matrix); | 
 | } | 
 |  | 
 | #endif // EIGEN_LLT_H |