| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #ifndef EIGEN_SCALING_H | 
 | #define EIGEN_SCALING_H | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |   * | 
 |   * \class Scaling | 
 |   * | 
 |   * \brief Represents a generic uniform scaling transformation | 
 |   * | 
 |   * \param _Scalar the scalar type, i.e., the type of the coefficients. | 
 |   * | 
 |   * This class represent a uniform scaling transformation. It is the return | 
 |   * type of Scaling(Scalar), and most of the time this is the only way it | 
 |   * is used. In particular, this class is not aimed to be used to store a scaling transformation, | 
 |   * but rather to make easier the constructions and updates of Transform objects. | 
 |   * | 
 |   * To represent an axis aligned scaling, use the DiagonalMatrix class. | 
 |   * | 
 |   * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform | 
 |   */ | 
 | template<typename _Scalar> | 
 | class UniformScaling | 
 | { | 
 | public: | 
 |   /** the scalar type of the coefficients */ | 
 |   typedef _Scalar Scalar; | 
 |  | 
 | protected: | 
 |  | 
 |   Scalar m_factor; | 
 |  | 
 | public: | 
 |  | 
 |   /** Default constructor without initialization. */ | 
 |   UniformScaling() {} | 
 |   /** Constructs and initialize a uniform scaling transformation */ | 
 |   explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} | 
 |  | 
 |   inline const Scalar& factor() const { return m_factor; } | 
 |   inline Scalar& factor() { return m_factor; } | 
 |  | 
 |   /** Concatenates two uniform scaling */ | 
 |   inline UniformScaling operator* (const UniformScaling& other) const | 
 |   { return UniformScaling(m_factor * other.factor()); } | 
 |  | 
 |   /** Concatenates a uniform scaling and a translation */ | 
 |   template<int Dim> | 
 |   inline Transform<Scalar,Dim> operator* (const Translation<Scalar,Dim>& t) const; | 
 |  | 
 |   /** Concatenates a uniform scaling and an affine transformation */ | 
 |   template<int Dim, int Mode> | 
 |   inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim, Mode>& t) const; | 
 |  | 
 |   /** Concatenates a uniform scaling and a linear transformation matrix */ | 
 |   // TODO returns an expression | 
 |   template<typename Derived> | 
 |   inline typename ei_plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const | 
 |   { return other * m_factor; } | 
 |  | 
 |   template<typename Derived,int Dim> | 
 |   inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const | 
 |   { return r.toRotationMatrix() * m_factor; } | 
 |  | 
 |   /** \returns the inverse scaling */ | 
 |   inline UniformScaling inverse() const | 
 |   { return UniformScaling(Scalar(1)/m_factor); } | 
 |  | 
 |   /** \returns \c *this with scalar type casted to \a NewScalarType | 
 |     * | 
 |     * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
 |     * then this function smartly returns a const reference to \c *this. | 
 |     */ | 
 |   template<typename NewScalarType> | 
 |   inline UniformScaling<NewScalarType> cast() const | 
 |   { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); } | 
 |  | 
 |   /** Copy constructor with scalar type conversion */ | 
 |   template<typename OtherScalarType> | 
 |   inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other) | 
 |   { m_factor = Scalar(other.factor()); } | 
 |  | 
 |   /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
 |     * determined by \a prec. | 
 |     * | 
 |     * \sa MatrixBase::isApprox() */ | 
 |   bool isApprox(const UniformScaling& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const | 
 |   { return ei_isApprox(m_factor, other.factor(), prec); } | 
 |  | 
 | }; | 
 |  | 
 | /** Concatenates a linear transformation matrix and a uniform scaling */ | 
 | // NOTE this operator is defiend in MatrixBase and not as a friend function | 
 | // of UniformScaling to fix an internal crash of Intel's ICC | 
 | template<typename Derived> const typename MatrixBase<Derived>::ScalarMultipleReturnType | 
 | MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const | 
 | { return derived() * s.factor(); } | 
 |  | 
 | /** Constructs a uniform scaling from scale factor \a s */ | 
 | static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); } | 
 | /** Constructs a uniform scaling from scale factor \a s */ | 
 | static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); } | 
 | /** Constructs a uniform scaling from scale factor \a s */ | 
 | template<typename RealScalar> | 
 | static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s) | 
 | { return UniformScaling<std::complex<RealScalar> >(s); } | 
 |  | 
 | /** Constructs a 2D axis aligned scaling */ | 
 | template<typename Scalar> | 
 | static inline DiagonalMatrix<Scalar,2> Scaling(Scalar sx, Scalar sy) | 
 | { return DiagonalMatrix<Scalar,2>(sx, sy); } | 
 | /** Constructs a 3D axis aligned scaling */ | 
 | template<typename Scalar> | 
 | static inline DiagonalMatrix<Scalar,3> Scaling(Scalar sx, Scalar sy, Scalar sz) | 
 | { return DiagonalMatrix<Scalar,3>(sx, sy, sz); } | 
 |  | 
 | /** Constructs an axis aligned scaling expression from vector expression \a coeffs | 
 |   * This is an alias for coeffs.asDiagonal() | 
 |   */ | 
 | template<typename Derived> | 
 | static inline const DiagonalWrapper<Derived> Scaling(const MatrixBase<Derived>& coeffs) | 
 | { return coeffs.asDiagonal(); } | 
 |  | 
 | /** \addtogroup Geometry_Module */ | 
 | //@{ | 
 | /** \deprecated */ | 
 | typedef DiagonalMatrix<float, 2> AlignedScaling2f; | 
 | /** \deprecated */ | 
 | typedef DiagonalMatrix<double,2> AlignedScaling2d; | 
 | /** \deprecated */ | 
 | typedef DiagonalMatrix<float, 3> AlignedScaling3f; | 
 | /** \deprecated */ | 
 | typedef DiagonalMatrix<double,3> AlignedScaling3d; | 
 | //@} | 
 |  | 
 | template<typename Scalar> | 
 | template<int Dim> | 
 | inline Transform<Scalar,Dim> | 
 | UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const | 
 | { | 
 |   Transform<Scalar,Dim> res; | 
 |   res.matrix().setZero(); | 
 |   res.linear().diagonal().fill(factor()); | 
 |   res.translation() = factor() * t.vector(); | 
 |   res(Dim,Dim) = Scalar(1); | 
 |   return res; | 
 | } | 
 |  | 
 | template<typename Scalar> | 
 | template<int Dim,int Mode> | 
 | inline Transform<Scalar,Dim,Mode> | 
 | UniformScaling<Scalar>::operator* (const Transform<Scalar,Dim, Mode>& t) const | 
 | { | 
 |   Transform<Scalar,Dim,Mode> res = t; | 
 |   res.prescale(factor()); | 
 |   return res; | 
 | } | 
 |  | 
 | #endif // EIGEN_SCALING_H |