|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H | 
|  | #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H | 
|  |  | 
|  | /** \ingroup QR_Module | 
|  | * \nonstableyet | 
|  | * | 
|  | * \class FullPivHouseholderQR | 
|  | * | 
|  | * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting | 
|  | * | 
|  | * \param MatrixType the type of the matrix of which we are computing the QR decomposition | 
|  | * | 
|  | * This class performs a rank-revealing QR decomposition using Householder transformations. | 
|  | * | 
|  | * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal | 
|  | * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR. | 
|  | * | 
|  | * \sa MatrixBase::fullPivHouseholderQr() | 
|  | */ | 
|  | template<typename _MatrixType> class FullPivHouseholderQR | 
|  | { | 
|  | public: | 
|  |  | 
|  | typedef _MatrixType MatrixType; | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | Options = MatrixType::Options, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType; | 
|  | typedef typename ei_plain_diag_type<MatrixType>::type HCoeffsType; | 
|  | typedef Matrix<Index, 1, ColsAtCompileTime, RowMajor, 1, MaxColsAtCompileTime> IntRowVectorType; | 
|  | typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType; | 
|  | typedef typename ei_plain_col_type<MatrixType, Index>::type IntColVectorType; | 
|  | typedef typename ei_plain_row_type<MatrixType>::type RowVectorType; | 
|  | typedef typename ei_plain_col_type<MatrixType>::type ColVectorType; | 
|  |  | 
|  | /** \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&). | 
|  | */ | 
|  | FullPivHouseholderQR() | 
|  | : m_qr(), | 
|  | m_hCoeffs(), | 
|  | m_rows_transpositions(), | 
|  | m_cols_transpositions(), | 
|  | m_cols_permutation(), | 
|  | m_temp(), | 
|  | m_isInitialized(false) {} | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa FullPivHouseholderQR() | 
|  | */ | 
|  | FullPivHouseholderQR(Index rows, Index cols) | 
|  | : m_qr(rows, cols), | 
|  | m_hCoeffs(std::min(rows,cols)), | 
|  | m_rows_transpositions(rows), | 
|  | m_cols_transpositions(cols), | 
|  | m_cols_permutation(cols), | 
|  | m_temp(std::min(rows,cols)), | 
|  | m_isInitialized(false) {} | 
|  |  | 
|  | FullPivHouseholderQR(const MatrixType& matrix) | 
|  | : m_qr(matrix.rows(), matrix.cols()), | 
|  | m_hCoeffs(std::min(matrix.rows(), matrix.cols())), | 
|  | m_rows_transpositions(matrix.rows()), | 
|  | m_cols_transpositions(matrix.cols()), | 
|  | m_cols_permutation(matrix.cols()), | 
|  | m_temp(std::min(matrix.rows(), matrix.cols())), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | /** This method finds a solution x to the equation Ax=b, where A is the matrix of which | 
|  | * *this is the QR decomposition, if any exists. | 
|  | * | 
|  | * \param b the right-hand-side of the equation to solve. | 
|  | * | 
|  | * \returns a solution. | 
|  | * | 
|  | * \note The case where b is a matrix is not yet implemented. Also, this | 
|  | *       code is space inefficient. | 
|  | * | 
|  | * \note_about_checking_solutions | 
|  | * | 
|  | * \note_about_arbitrary_choice_of_solution | 
|  | * | 
|  | * Example: \include FullPivHouseholderQR_solve.cpp | 
|  | * Output: \verbinclude FullPivHouseholderQR_solve.out | 
|  | */ | 
|  | template<typename Rhs> | 
|  | inline const ei_solve_retval<FullPivHouseholderQR, Rhs> | 
|  | solve(const MatrixBase<Rhs>& b) const | 
|  | { | 
|  | ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); | 
|  | return ei_solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived()); | 
|  | } | 
|  |  | 
|  | MatrixQType matrixQ(void) const; | 
|  |  | 
|  | /** \returns a reference to the matrix where the Householder QR decomposition is stored | 
|  | */ | 
|  | const MatrixType& matrixQR() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); | 
|  | return m_qr; | 
|  | } | 
|  |  | 
|  | FullPivHouseholderQR& compute(const MatrixType& matrix); | 
|  |  | 
|  | const PermutationType& colsPermutation() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); | 
|  | return m_cols_permutation; | 
|  | } | 
|  |  | 
|  | const IntColVectorType& rowsTranspositions() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); | 
|  | return m_rows_transpositions; | 
|  | } | 
|  |  | 
|  | /** \returns the absolute value of the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \warning a determinant can be very big or small, so for matrices | 
|  | * of large enough dimension, there is a risk of overflow/underflow. | 
|  | * One way to work around that is to use logAbsDeterminant() instead. | 
|  | * | 
|  | * \sa logAbsDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::RealScalar absDeterminant() const; | 
|  |  | 
|  | /** \returns the natural log of the absolute value of the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \note This method is useful to work around the risk of overflow/underflow that's inherent | 
|  | * to determinant computation. | 
|  | * | 
|  | * \sa absDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::RealScalar logAbsDeterminant() const; | 
|  |  | 
|  | /** \returns the rank of the matrix of which *this is the QR decomposition. | 
|  | * | 
|  | * \note This is computed at the time of the construction of the QR decomposition. This | 
|  | *       method does not perform any further computation. | 
|  | */ | 
|  | inline Index rank() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); | 
|  | return m_rank; | 
|  | } | 
|  |  | 
|  | /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. | 
|  | * | 
|  | * \note Since the rank is computed at the time of the construction of the QR decomposition, this | 
|  | *       method almost does not perform any further computation. | 
|  | */ | 
|  | inline Index dimensionOfKernel() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); | 
|  | return m_qr.cols() - m_rank; | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the QR decomposition represents an injective | 
|  | *          linear map, i.e. has trivial kernel; false otherwise. | 
|  | * | 
|  | * \note Since the rank is computed at the time of the construction of the QR decomposition, this | 
|  | *       method almost does not perform any further computation. | 
|  | */ | 
|  | inline bool isInjective() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); | 
|  | return m_rank == m_qr.cols(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the QR decomposition represents a surjective | 
|  | *          linear map; false otherwise. | 
|  | * | 
|  | * \note Since the rank is computed at the time of the construction of the QR decomposition, this | 
|  | *       method almost does not perform any further computation. | 
|  | */ | 
|  | inline bool isSurjective() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); | 
|  | return m_rank == m_qr.rows(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the QR decomposition is invertible. | 
|  | * | 
|  | * \note Since the rank is computed at the time of the construction of the QR decomposition, this | 
|  | *       method almost does not perform any further computation. | 
|  | */ | 
|  | inline bool isInvertible() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); | 
|  | return isInjective() && isSurjective(); | 
|  | } | 
|  |  | 
|  | /** \returns the inverse of the matrix of which *this is the QR decomposition. | 
|  | * | 
|  | * \note If this matrix is not invertible, the returned matrix has undefined coefficients. | 
|  | *       Use isInvertible() to first determine whether this matrix is invertible. | 
|  | */    inline const | 
|  | ei_solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType> | 
|  | inverse() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); | 
|  | return ei_solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType> | 
|  | (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols())); | 
|  | } | 
|  |  | 
|  | inline Index rows() const { return m_qr.rows(); } | 
|  | inline Index cols() const { return m_qr.cols(); } | 
|  | const HCoeffsType& hCoeffs() const { return m_hCoeffs; } | 
|  |  | 
|  | protected: | 
|  | MatrixType m_qr; | 
|  | HCoeffsType m_hCoeffs; | 
|  | IntColVectorType m_rows_transpositions; | 
|  | IntRowVectorType m_cols_transpositions; | 
|  | PermutationType m_cols_permutation; | 
|  | RowVectorType m_temp; | 
|  | bool m_isInitialized; | 
|  | RealScalar m_precision; | 
|  | Index m_rank; | 
|  | Index m_det_pq; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); | 
|  | ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | return ei_abs(m_qr.diagonal().prod()); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); | 
|  | ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | return m_qr.diagonal().cwiseAbs().array().log().sum(); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix) | 
|  | { | 
|  | Index rows = matrix.rows(); | 
|  | Index cols = matrix.cols(); | 
|  | Index size = std::min(rows,cols); | 
|  | m_rank = size; | 
|  |  | 
|  | m_qr = matrix; | 
|  | m_hCoeffs.resize(size); | 
|  |  | 
|  | m_temp.resize(cols); | 
|  |  | 
|  | m_precision = NumTraits<Scalar>::epsilon() * size; | 
|  |  | 
|  | m_rows_transpositions.resize(matrix.rows()); | 
|  | m_cols_transpositions.resize(matrix.cols()); | 
|  | Index number_of_transpositions = 0; | 
|  |  | 
|  | RealScalar biggest(0); | 
|  |  | 
|  | for (Index k = 0; k < size; ++k) | 
|  | { | 
|  | Index row_of_biggest_in_corner, col_of_biggest_in_corner; | 
|  | RealScalar biggest_in_corner; | 
|  |  | 
|  | biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k) | 
|  | .cwiseAbs() | 
|  | .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); | 
|  | row_of_biggest_in_corner += k; | 
|  | col_of_biggest_in_corner += k; | 
|  | if(k==0) biggest = biggest_in_corner; | 
|  |  | 
|  | // if the corner is negligible, then we have less than full rank, and we can finish early | 
|  | if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision)) | 
|  | { | 
|  | m_rank = k; | 
|  | for(Index i = k; i < size; i++) | 
|  | { | 
|  | m_rows_transpositions.coeffRef(i) = i; | 
|  | m_cols_transpositions.coeffRef(i) = i; | 
|  | m_hCoeffs.coeffRef(i) = Scalar(0); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner; | 
|  | m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner; | 
|  | if(k != row_of_biggest_in_corner) { | 
|  | m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k)); | 
|  | ++number_of_transpositions; | 
|  | } | 
|  | if(k != col_of_biggest_in_corner) { | 
|  | m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner)); | 
|  | ++number_of_transpositions; | 
|  | } | 
|  |  | 
|  | RealScalar beta; | 
|  | m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); | 
|  | m_qr.coeffRef(k,k) = beta; | 
|  |  | 
|  | m_qr.bottomRightCorner(rows-k, cols-k-1) | 
|  | .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); | 
|  | } | 
|  |  | 
|  | m_cols_permutation.setIdentity(cols); | 
|  | for(Index k = 0; k < size; ++k) | 
|  | m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k)); | 
|  |  | 
|  | m_det_pq = (number_of_transpositions%2) ? -1 : 1; | 
|  | m_isInitialized = true; | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename _MatrixType, typename Rhs> | 
|  | struct ei_solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs> | 
|  | : ei_solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs> | 
|  | { | 
|  | EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs) | 
|  |  | 
|  | template<typename Dest> void evalTo(Dest& dst) const | 
|  | { | 
|  | const Index rows = dec().rows(), cols = dec().cols(); | 
|  | ei_assert(rhs().rows() == rows); | 
|  |  | 
|  | // FIXME introduce nonzeroPivots() and use it here. and more generally, | 
|  | // make the same improvements in this dec as in FullPivLU. | 
|  | if(dec().rank()==0) | 
|  | { | 
|  | dst.setZero(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | typename Rhs::PlainObject c(rhs()); | 
|  |  | 
|  | Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols()); | 
|  | for (Index k = 0; k < dec().rank(); ++k) | 
|  | { | 
|  | Index remainingSize = rows-k; | 
|  | c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k))); | 
|  | c.bottomRightCorner(remainingSize, rhs().cols()) | 
|  | .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1), | 
|  | dec().hCoeffs().coeff(k), &temp.coeffRef(0)); | 
|  | } | 
|  |  | 
|  | if(!dec().isSurjective()) | 
|  | { | 
|  | // is c is in the image of R ? | 
|  | RealScalar biggest_in_upper_part_of_c = c.topRows(   dec().rank()     ).cwiseAbs().maxCoeff(); | 
|  | RealScalar biggest_in_lower_part_of_c = c.bottomRows(rows-dec().rank()).cwiseAbs().maxCoeff(); | 
|  | // FIXME brain dead | 
|  | const RealScalar m_precision = NumTraits<Scalar>::epsilon() * std::min(rows,cols); | 
|  | if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision)) | 
|  | return; | 
|  | } | 
|  | dec().matrixQR() | 
|  | .topLeftCorner(dec().rank(), dec().rank()) | 
|  | .template triangularView<Upper>() | 
|  | .solveInPlace(c.topRows(dec().rank())); | 
|  |  | 
|  | for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i); | 
|  | for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \returns the matrix Q */ | 
|  | template<typename MatrixType> | 
|  | typename FullPivHouseholderQR<MatrixType>::MatrixQType FullPivHouseholderQR<MatrixType>::matrixQ() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); | 
|  | // compute the product H'_0 H'_1 ... H'_n-1, | 
|  | // where H_k is the k-th Householder transformation I - h_k v_k v_k' | 
|  | // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...] | 
|  | Index rows = m_qr.rows(); | 
|  | Index cols = m_qr.cols(); | 
|  | Index size = std::min(rows,cols); | 
|  | MatrixQType res = MatrixQType::Identity(rows, rows); | 
|  | Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows); | 
|  | for (Index k = size-1; k >= 0; k--) | 
|  | { | 
|  | res.block(k, k, rows-k, rows-k) | 
|  | .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k)); | 
|  | res.row(k).swap(res.row(m_rows_transpositions.coeff(k))); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** \return the full-pivoting Householder QR decomposition of \c *this. | 
|  | * | 
|  | * \sa class FullPivHouseholderQR | 
|  | */ | 
|  | template<typename Derived> | 
|  | const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject> | 
|  | MatrixBase<Derived>::fullPivHouseholderQr() const | 
|  | { | 
|  | return FullPivHouseholderQR<PlainObject>(eval()); | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H |