|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2010 Vincent Lejeune | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_QR_H | 
|  | #define EIGEN_QR_H | 
|  |  | 
|  | /** \ingroup QR_Module | 
|  | * \nonstableyet | 
|  | * | 
|  | * \class HouseholderQR | 
|  | * | 
|  | * \brief Householder QR decomposition of a matrix | 
|  | * | 
|  | * \param MatrixType the type of the matrix of which we are computing the QR decomposition | 
|  | * | 
|  | * This class performs a QR decomposition using Householder transformations. The result is | 
|  | * stored in a compact way compatible with LAPACK. | 
|  | * | 
|  | * Note that no pivoting is performed. This is \b not a rank-revealing decomposition. | 
|  | * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead. | 
|  | * | 
|  | * This Householder QR decomposition is faster, but less numerically stable and less feature-full than | 
|  | * FullPivHouseholderQR or ColPivHouseholderQR. | 
|  | * | 
|  | * \sa MatrixBase::householderQr() | 
|  | */ | 
|  | template<typename _MatrixType> class HouseholderQR | 
|  | { | 
|  | public: | 
|  |  | 
|  | typedef _MatrixType MatrixType; | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | Options = MatrixType::Options, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType; | 
|  | typedef typename ei_plain_diag_type<MatrixType>::type HCoeffsType; | 
|  | typedef typename ei_plain_row_type<MatrixType>::type RowVectorType; | 
|  | typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType; | 
|  |  | 
|  | /** | 
|  | * \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via HouseholderQR::compute(const MatrixType&). | 
|  | */ | 
|  | HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {} | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa HouseholderQR() | 
|  | */ | 
|  | HouseholderQR(Index rows, Index cols) | 
|  | : m_qr(rows, cols), | 
|  | m_hCoeffs(std::min(rows,cols)), | 
|  | m_temp(cols), | 
|  | m_isInitialized(false) {} | 
|  |  | 
|  | HouseholderQR(const MatrixType& matrix) | 
|  | : m_qr(matrix.rows(), matrix.cols()), | 
|  | m_hCoeffs(std::min(matrix.rows(),matrix.cols())), | 
|  | m_temp(matrix.cols()), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | /** This method finds a solution x to the equation Ax=b, where A is the matrix of which | 
|  | * *this is the QR decomposition, if any exists. | 
|  | * | 
|  | * \param b the right-hand-side of the equation to solve. | 
|  | * | 
|  | * \returns a solution. | 
|  | * | 
|  | * \note The case where b is a matrix is not yet implemented. Also, this | 
|  | *       code is space inefficient. | 
|  | * | 
|  | * \note_about_checking_solutions | 
|  | * | 
|  | * \note_about_arbitrary_choice_of_solution | 
|  | * | 
|  | * Example: \include HouseholderQR_solve.cpp | 
|  | * Output: \verbinclude HouseholderQR_solve.out | 
|  | */ | 
|  | template<typename Rhs> | 
|  | inline const ei_solve_retval<HouseholderQR, Rhs> | 
|  | solve(const MatrixBase<Rhs>& b) const | 
|  | { | 
|  | ei_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
|  | return ei_solve_retval<HouseholderQR, Rhs>(*this, b.derived()); | 
|  | } | 
|  |  | 
|  | HouseholderSequenceType householderQ() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
|  | return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); | 
|  | } | 
|  |  | 
|  | /** \returns a reference to the matrix where the Householder QR decomposition is stored | 
|  | * in a LAPACK-compatible way. | 
|  | */ | 
|  | const MatrixType& matrixQR() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
|  | return m_qr; | 
|  | } | 
|  |  | 
|  | HouseholderQR& compute(const MatrixType& matrix); | 
|  |  | 
|  | /** \returns the absolute value of the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \warning a determinant can be very big or small, so for matrices | 
|  | * of large enough dimension, there is a risk of overflow/underflow. | 
|  | * One way to work around that is to use logAbsDeterminant() instead. | 
|  | * | 
|  | * \sa logAbsDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::RealScalar absDeterminant() const; | 
|  |  | 
|  | /** \returns the natural log of the absolute value of the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \note This method is useful to work around the risk of overflow/underflow that's inherent | 
|  | * to determinant computation. | 
|  | * | 
|  | * \sa absDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::RealScalar logAbsDeterminant() const; | 
|  |  | 
|  | inline Index rows() const { return m_qr.rows(); } | 
|  | inline Index cols() const { return m_qr.cols(); } | 
|  | const HCoeffsType& hCoeffs() const { return m_hCoeffs; } | 
|  |  | 
|  | protected: | 
|  | MatrixType m_qr; | 
|  | HCoeffsType m_hCoeffs; | 
|  | RowVectorType m_temp; | 
|  | bool m_isInitialized; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
|  | ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | return ei_abs(m_qr.diagonal().prod()); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
|  | ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | return m_qr.diagonal().cwiseAbs().array().log().sum(); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename MatrixQR, typename HCoeffs> | 
|  | void ei_householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0) | 
|  | { | 
|  | typedef typename MatrixQR::Index Index; | 
|  | typedef typename MatrixQR::Scalar Scalar; | 
|  | typedef typename MatrixQR::RealScalar RealScalar; | 
|  | Index rows = mat.rows(); | 
|  | Index cols = mat.cols(); | 
|  | Index size = std::min(rows,cols); | 
|  |  | 
|  | ei_assert(hCoeffs.size() == size); | 
|  |  | 
|  | typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType; | 
|  | TempType tempVector; | 
|  | if(tempData==0) | 
|  | { | 
|  | tempVector.resize(cols); | 
|  | tempData = tempVector.data(); | 
|  | } | 
|  |  | 
|  | for(Index k = 0; k < size; ++k) | 
|  | { | 
|  | Index remainingRows = rows - k; | 
|  | Index remainingCols = cols - k - 1; | 
|  |  | 
|  | RealScalar beta; | 
|  | mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta); | 
|  | mat.coeffRef(k,k) = beta; | 
|  |  | 
|  | // apply H to remaining part of m_qr from the left | 
|  | mat.bottomRightCorner(remainingRows, remainingCols) | 
|  | .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename MatrixQR, typename HCoeffs> | 
|  | void ei_householder_qr_inplace_blocked(MatrixQR& mat, HCoeffs& hCoeffs, | 
|  | typename MatrixQR::Index maxBlockSize=32, | 
|  | typename MatrixQR::Scalar* tempData = 0) | 
|  | { | 
|  | typedef typename MatrixQR::Index Index; | 
|  | typedef typename MatrixQR::Scalar Scalar; | 
|  | typedef typename MatrixQR::RealScalar RealScalar; | 
|  | typedef Block<MatrixQR,Dynamic,Dynamic> BlockType; | 
|  |  | 
|  | Index rows = mat.rows(); | 
|  | Index cols = mat.cols(); | 
|  | Index size = std::min(rows, cols); | 
|  |  | 
|  | typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType; | 
|  | TempType tempVector; | 
|  | if(tempData==0) | 
|  | { | 
|  | tempVector.resize(cols); | 
|  | tempData = tempVector.data(); | 
|  | } | 
|  |  | 
|  | Index blockSize = std::min(maxBlockSize,size); | 
|  |  | 
|  | int k = 0; | 
|  | for (k = 0; k < size; k += blockSize) | 
|  | { | 
|  | Index bs = std::min(size-k,blockSize);  // actual size of the block | 
|  | Index tcols = cols - k - bs;            // trailing columns | 
|  | Index brows = rows-k;                   // rows of the block | 
|  |  | 
|  | // partition the matrix: | 
|  | //        A00 | A01 | A02 | 
|  | // mat  = A10 | A11 | A12 | 
|  | //        A20 | A21 | A22 | 
|  | // and performs the qr dec of [A11^T A12^T]^T | 
|  | // and update [A21^T A22^T]^T using level 3 operations. | 
|  | // Finally, the algorithm continue on A22 | 
|  |  | 
|  | BlockType A11_21 = mat.block(k,k,brows,bs); | 
|  | Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs); | 
|  |  | 
|  | ei_householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData); | 
|  |  | 
|  | if(tcols) | 
|  | { | 
|  | BlockType A21_22 = mat.block(k,k+bs,brows,tcols); | 
|  | ei_apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix) | 
|  | { | 
|  | Index rows = matrix.rows(); | 
|  | Index cols = matrix.cols(); | 
|  | Index size = std::min(rows,cols); | 
|  |  | 
|  | m_qr = matrix; | 
|  | m_hCoeffs.resize(size); | 
|  |  | 
|  | m_temp.resize(cols); | 
|  |  | 
|  | ei_householder_qr_inplace_blocked(m_qr, m_hCoeffs, 48, m_temp.data()); | 
|  |  | 
|  | m_isInitialized = true; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename _MatrixType, typename Rhs> | 
|  | struct ei_solve_retval<HouseholderQR<_MatrixType>, Rhs> | 
|  | : ei_solve_retval_base<HouseholderQR<_MatrixType>, Rhs> | 
|  | { | 
|  | EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs) | 
|  |  | 
|  | template<typename Dest> void evalTo(Dest& dst) const | 
|  | { | 
|  | const Index rows = dec().rows(), cols = dec().cols(); | 
|  | const Index rank = std::min(rows, cols); | 
|  | ei_assert(rhs().rows() == rows); | 
|  |  | 
|  | typename Rhs::PlainObject c(rhs()); | 
|  |  | 
|  | // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T | 
|  | c.applyOnTheLeft(householderSequence( | 
|  | dec().matrixQR().leftCols(rank), | 
|  | dec().hCoeffs().head(rank)).transpose() | 
|  | ); | 
|  |  | 
|  | dec().matrixQR() | 
|  | .topLeftCorner(rank, rank) | 
|  | .template triangularView<Upper>() | 
|  | .solveInPlace(c.topRows(rank)); | 
|  |  | 
|  | dst.topRows(rank) = c.topRows(rank); | 
|  | dst.bottomRows(cols-rank).setZero(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \return the Householder QR decomposition of \c *this. | 
|  | * | 
|  | * \sa class HouseholderQR | 
|  | */ | 
|  | template<typename Derived> | 
|  | const HouseholderQR<typename MatrixBase<Derived>::PlainObject> | 
|  | MatrixBase<Derived>::householderQr() const | 
|  | { | 
|  | return HouseholderQR<PlainObject>(eval()); | 
|  | } | 
|  |  | 
|  |  | 
|  | #endif // EIGEN_QR_H |