| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <limits> |
| #include <Eigen/Eigenvalues> |
| |
| #ifdef HAS_GSL |
| #include "gsl_helper.h" |
| #endif |
| |
| template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| /* this test covers the following files: |
| EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) |
| */ |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; |
| typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; |
| |
| RealScalar largerEps = 10*test_precision<RealScalar>(); |
| |
| MatrixType a = MatrixType::Random(rows,cols); |
| MatrixType a1 = MatrixType::Random(rows,cols); |
| MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; |
| symmA.template triangularView<StrictlyUpper>().setZero(); |
| |
| MatrixType b = MatrixType::Random(rows,cols); |
| MatrixType b1 = MatrixType::Random(rows,cols); |
| MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; |
| symmB.template triangularView<StrictlyUpper>().setZero(); |
| |
| SelfAdjointEigenSolver<MatrixType> eiSymm(symmA); |
| // generalized eigen pb |
| GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB); |
| |
| #ifdef HAS_GSL |
| if (ei_is_same_type<RealScalar,double>::ret) |
| { |
| // restore symmA and symmB. |
| symmA = MatrixType(symmA.template selfadjointView<Lower>()); |
| symmB = MatrixType(symmB.template selfadjointView<Lower>()); |
| typedef GslTraits<Scalar> Gsl; |
| typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0; |
| typename GslTraits<RealScalar>::Vector gEval=0; |
| RealVectorType _eval; |
| MatrixType _evec; |
| convert<MatrixType>(symmA, gSymmA); |
| convert<MatrixType>(symmB, gSymmB); |
| convert<MatrixType>(symmA, gEvec); |
| gEval = GslTraits<RealScalar>::createVector(rows); |
| |
| Gsl::eigen_symm(gSymmA, gEval, gEvec); |
| convert(gEval, _eval); |
| convert(gEvec, _evec); |
| |
| // test gsl itself ! |
| VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps)); |
| |
| // compare with eigen |
| VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues()); |
| VERIFY_IS_APPROX(_evec.cwiseAbs(), eiSymm.eigenvectors().cwiseAbs()); |
| |
| // generalized pb |
| Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec); |
| convert(gEval, _eval); |
| convert(gEvec, _evec); |
| // test GSL itself: |
| VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps)); |
| |
| // compare with eigen |
| MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse(); |
| VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues()); |
| VERIFY_IS_APPROX(_evec.cwiseAbs(), normalized_eivec.cwiseAbs()); |
| |
| Gsl::free(gSymmA); |
| Gsl::free(gSymmB); |
| GslTraits<RealScalar>::free(gEval); |
| Gsl::free(gEvec); |
| } |
| #endif |
| |
| VERIFY_IS_EQUAL(eiSymm.info(), Success); |
| VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox( |
| eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); |
| VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); |
| |
| SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false); |
| VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success); |
| VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); |
| |
| // generalized eigen problem Ax = lBx |
| eiSymmGen.compute(symmA, symmB,Ax_lBx); |
| VERIFY_IS_EQUAL(eiSymmGen.info(), Success); |
| VERIFY((symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox( |
| symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); |
| |
| // generalized eigen problem BAx = lx |
| eiSymmGen.compute(symmA, symmB,BAx_lx); |
| VERIFY_IS_EQUAL(eiSymmGen.info(), Success); |
| VERIFY((symmB.template selfadjointView<Lower>() * (symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( |
| (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); |
| |
| // generalized eigen problem ABx = lx |
| eiSymmGen.compute(symmA, symmB,ABx_lx); |
| VERIFY_IS_EQUAL(eiSymmGen.info(), Success); |
| VERIFY((symmA.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( |
| (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); |
| |
| |
| MatrixType sqrtSymmA = eiSymm.operatorSqrt(); |
| VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA); |
| VERIFY_IS_APPROX(sqrtSymmA, symmA.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt()); |
| |
| MatrixType id = MatrixType::Identity(rows, cols); |
| VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1)); |
| |
| SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized; |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.info()); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues()); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); |
| |
| eiSymmUninitialized.compute(symmA, false); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); |
| |
| if (rows > 1) |
| { |
| // Test matrix with NaN |
| symmA(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); |
| SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmA); |
| VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence); |
| } |
| } |
| |
| void test_eigensolver_selfadjoint() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| // very important to test a 3x3 matrix since we provide a special path for it |
| CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) ); |
| CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) ); |
| CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(10,10)) ); |
| CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(19,19)) ); |
| CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(17,17)) ); |
| |
| // some trivial but implementation-wise tricky cases |
| CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) ); |
| CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) ); |
| CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) ); |
| CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) ); |
| } |
| |
| // Test problem size constructors |
| CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf>(10)); |
| CALL_SUBTEST_8(Tridiagonalization<MatrixXf>(10)); |
| } |
| |