| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/Eigenvalues> | 
 |  | 
 | template<typename Scalar,int Size> void hessenberg(int size = Size) | 
 | { | 
 |   typedef Matrix<Scalar,Size,Size> MatrixType; | 
 |  | 
 |   // Test basic functionality: A = U H U* and H is Hessenberg | 
 |   for(int counter = 0; counter < g_repeat; ++counter) { | 
 |     MatrixType m = MatrixType::Random(size,size); | 
 |     HessenbergDecomposition<MatrixType> hess(m); | 
 |     MatrixType Q = hess.matrixQ(); | 
 |     MatrixType H = hess.matrixH(); | 
 |     VERIFY_IS_APPROX(m, Q * H * Q.adjoint()); | 
 |     for(int row = 2; row < size; ++row) { | 
 |       for(int col = 0; col < row-1; ++col) { | 
 | 	VERIFY(H(row,col) == (typename MatrixType::Scalar)0); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Test whether compute() and constructor returns same result | 
 |   MatrixType A = MatrixType::Random(size, size); | 
 |   HessenbergDecomposition<MatrixType> cs1; | 
 |   cs1.compute(A); | 
 |   HessenbergDecomposition<MatrixType> cs2(A); | 
 |   VERIFY_IS_EQUAL(cs1.matrixH().eval(), cs2.matrixH().eval()); | 
 |   MatrixType cs1Q = cs1.matrixQ(); | 
 |   MatrixType cs2Q = cs2.matrixQ();   | 
 |   VERIFY_IS_EQUAL(cs1Q, cs2Q); | 
 |  | 
 |   // Test assertions for when used uninitialized | 
 |   HessenbergDecomposition<MatrixType> hessUninitialized; | 
 |   VERIFY_RAISES_ASSERT( hessUninitialized.matrixH() ); | 
 |   VERIFY_RAISES_ASSERT( hessUninitialized.matrixQ() ); | 
 |   VERIFY_RAISES_ASSERT( hessUninitialized.householderCoefficients() ); | 
 |   VERIFY_RAISES_ASSERT( hessUninitialized.packedMatrix() ); | 
 |  | 
 |   // TODO: Add tests for packedMatrix() and householderCoefficients() | 
 | } | 
 |  | 
 | void test_hessenberg() | 
 | { | 
 |   CALL_SUBTEST_1(( hessenberg<std::complex<double>,1>() )); | 
 |   CALL_SUBTEST_2(( hessenberg<std::complex<double>,2>() )); | 
 |   CALL_SUBTEST_3(( hessenberg<std::complex<float>,4>() )); | 
 |   CALL_SUBTEST_4(( hessenberg<float,Dynamic>(ei_random<int>(1,320)) )); | 
 |   CALL_SUBTEST_5(( hessenberg<std::complex<double>,Dynamic>(ei_random<int>(1,320)) )); | 
 |  | 
 |   // Test problem size constructors | 
 |   CALL_SUBTEST_6(HessenbergDecomposition<MatrixXf>(10)); | 
 | } |