| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template<typename MatrixType> void syrk(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Index Index; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> Rhs1; | 
 |   typedef Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> Rhs2; | 
 |   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic,RowMajor> Rhs3; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |              m2 = MatrixType::Random(rows, cols); | 
 |  | 
 |   Rhs1 rhs1 = Rhs1::Random(ei_random<int>(1,320), cols); | 
 |   Rhs2 rhs2 = Rhs2::Random(rows, ei_random<int>(1,320)); | 
 |   Rhs3 rhs3 = Rhs3::Random(ei_random<int>(1,320), rows); | 
 |  | 
 |   Scalar s1 = ei_random<Scalar>(); | 
 |  | 
 |   m2.setZero(); | 
 |   VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(rhs2,s1)._expression()), | 
 |                    ((s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Lower>().toDenseMatrix())); | 
 |  | 
 |   m2.setZero(); | 
 |   VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs2,s1)._expression(), | 
 |                    (s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Upper>().toDenseMatrix()); | 
 |  | 
 |   m2.setZero(); | 
 |   VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs1.adjoint(),s1)._expression(), | 
 |                    (s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Lower>().toDenseMatrix()); | 
 |  | 
 |   m2.setZero(); | 
 |   VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs1.adjoint(),s1)._expression(), | 
 |                    (s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Upper>().toDenseMatrix()); | 
 |  | 
 |   m2.setZero(); | 
 |   VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs3.adjoint(),s1)._expression(), | 
 |                    (s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Lower>().toDenseMatrix()); | 
 |  | 
 |   m2.setZero(); | 
 |   VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs3.adjoint(),s1)._expression(), | 
 |                    (s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Upper>().toDenseMatrix()); | 
 | } | 
 |  | 
 | void test_product_syrk() | 
 | { | 
 |   for(int i = 0; i < g_repeat ; i++) | 
 |   { | 
 |     int s; | 
 |     s = ei_random<int>(10,320); | 
 |     CALL_SUBTEST_1( syrk(MatrixXf(s, s)) ); | 
 |     s = ei_random<int>(10,320); | 
 |     CALL_SUBTEST_2( syrk(MatrixXd(s, s)) ); | 
 |     s = ei_random<int>(10,320); | 
 |     CALL_SUBTEST_3( syrk(MatrixXcd(s, s)) ); | 
 |   } | 
 | } |