|  | 
 | template <typename Scalar> | 
 | void ei_lmpar( | 
 |         Matrix< Scalar, Dynamic, Dynamic > &r, | 
 |         const VectorXi &ipvt, | 
 |         const Matrix< Scalar, Dynamic, 1 >  &diag, | 
 |         const Matrix< Scalar, Dynamic, 1 >  &qtb, | 
 |         Scalar delta, | 
 |         Scalar &par, | 
 |         Matrix< Scalar, Dynamic, 1 >  &x) | 
 | { | 
 |     typedef DenseIndex Index; | 
 |  | 
 |     /* Local variables */ | 
 |     Index i, j, l; | 
 |     Scalar fp; | 
 |     Scalar parc, parl; | 
 |     Index iter; | 
 |     Scalar temp, paru; | 
 |     Scalar gnorm; | 
 |     Scalar dxnorm; | 
 |  | 
 |  | 
 |     /* Function Body */ | 
 |     const Scalar dwarf = std::numeric_limits<Scalar>::min(); | 
 |     const Index n = r.cols(); | 
 |     assert(n==diag.size()); | 
 |     assert(n==qtb.size()); | 
 |     assert(n==x.size()); | 
 |  | 
 |     Matrix< Scalar, Dynamic, 1 >  wa1, wa2; | 
 |  | 
 |     /* compute and store in x the gauss-newton direction. if the */ | 
 |     /* jacobian is rank-deficient, obtain a least squares solution. */ | 
 |     Index nsing = n-1; | 
 |     wa1 = qtb; | 
 |     for (j = 0; j < n; ++j) { | 
 |         if (r(j,j) == 0. && nsing == n-1) | 
 |             nsing = j - 1; | 
 |         if (nsing < n-1) | 
 |             wa1[j] = 0.; | 
 |     } | 
 |     for (j = nsing; j>=0; --j) { | 
 |         wa1[j] /= r(j,j); | 
 |         temp = wa1[j]; | 
 |         for (i = 0; i < j ; ++i) | 
 |             wa1[i] -= r(i,j) * temp; | 
 |     } | 
 |  | 
 |     for (j = 0; j < n; ++j) | 
 |         x[ipvt[j]] = wa1[j]; | 
 |  | 
 |     /* initialize the iteration counter. */ | 
 |     /* evaluate the function at the origin, and test */ | 
 |     /* for acceptance of the gauss-newton direction. */ | 
 |     iter = 0; | 
 |     wa2 = diag.cwiseProduct(x); | 
 |     dxnorm = wa2.blueNorm(); | 
 |     fp = dxnorm - delta; | 
 |     if (fp <= Scalar(0.1) * delta) { | 
 |         par = 0; | 
 |         return; | 
 |     } | 
 |  | 
 |     /* if the jacobian is not rank deficient, the newton */ | 
 |     /* step provides a lower bound, parl, for the zero of */ | 
 |     /* the function. otherwise set this bound to zero. */ | 
 |     parl = 0.; | 
 |     if (nsing >= n-1) { | 
 |         for (j = 0; j < n; ++j) { | 
 |             l = ipvt[j]; | 
 |             wa1[j] = diag[l] * (wa2[l] / dxnorm); | 
 |         } | 
 |         // it's actually a triangularView.solveInplace(), though in a weird | 
 |         // way: | 
 |         for (j = 0; j < n; ++j) { | 
 |             Scalar sum = 0.; | 
 |             for (i = 0; i < j; ++i) | 
 |                 sum += r(i,j) * wa1[i]; | 
 |             wa1[j] = (wa1[j] - sum) / r(j,j); | 
 |         } | 
 |         temp = wa1.blueNorm(); | 
 |         parl = fp / delta / temp / temp; | 
 |     } | 
 |  | 
 |     /* calculate an upper bound, paru, for the zero of the function. */ | 
 |     for (j = 0; j < n; ++j) | 
 |         wa1[j] = r.col(j).head(j+1).dot(qtb.head(j+1)) / diag[ipvt[j]]; | 
 |  | 
 |     gnorm = wa1.stableNorm(); | 
 |     paru = gnorm / delta; | 
 |     if (paru == 0.) | 
 |         paru = dwarf / std::min(delta,Scalar(0.1)); | 
 |  | 
 |     /* if the input par lies outside of the interval (parl,paru), */ | 
 |     /* set par to the closer endpoint. */ | 
 |     par = std::max(par,parl); | 
 |     par = std::min(par,paru); | 
 |     if (par == 0.) | 
 |         par = gnorm / dxnorm; | 
 |  | 
 |     /* beginning of an iteration. */ | 
 |     while (true) { | 
 |         ++iter; | 
 |  | 
 |         /* evaluate the function at the current value of par. */ | 
 |         if (par == 0.) | 
 |             par = std::max(dwarf,Scalar(.001) * paru); /* Computing MAX */ | 
 |         wa1 = ei_sqrt(par)* diag; | 
 |  | 
 |         Matrix< Scalar, Dynamic, 1 > sdiag(n); | 
 |         ei_qrsolv<Scalar>(r, ipvt, wa1, qtb, x, sdiag); | 
 |  | 
 |         wa2 = diag.cwiseProduct(x); | 
 |         dxnorm = wa2.blueNorm(); | 
 |         temp = fp; | 
 |         fp = dxnorm - delta; | 
 |  | 
 |         /* if the function is small enough, accept the current value */ | 
 |         /* of par. also test for the exceptional cases where parl */ | 
 |         /* is zero or the number of iterations has reached 10. */ | 
 |         if (ei_abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10) | 
 |             break; | 
 |  | 
 |         /* compute the newton correction. */ | 
 |         for (j = 0; j < n; ++j) { | 
 |             l = ipvt[j]; | 
 |             wa1[j] = diag[l] * (wa2[l] / dxnorm); | 
 |         } | 
 |         for (j = 0; j < n; ++j) { | 
 |             wa1[j] /= sdiag[j]; | 
 |             temp = wa1[j]; | 
 |             for (i = j+1; i < n; ++i) | 
 |                 wa1[i] -= r(i,j) * temp; | 
 |         } | 
 |         temp = wa1.blueNorm(); | 
 |         parc = fp / delta / temp / temp; | 
 |  | 
 |         /* depending on the sign of the function, update parl or paru. */ | 
 |         if (fp > 0.) | 
 |             parl = std::max(parl,par); | 
 |         if (fp < 0.) | 
 |             paru = std::min(paru,par); | 
 |  | 
 |         /* compute an improved estimate for par. */ | 
 |         /* Computing MAX */ | 
 |         par = std::max(parl,par+parc); | 
 |  | 
 |         /* end of an iteration. */ | 
 |     } | 
 |  | 
 |     /* termination. */ | 
 |     if (iter == 0) | 
 |         par = 0.; | 
 |     return; | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | void ei_lmpar2( | 
 |         const ColPivHouseholderQR<Matrix< Scalar, Dynamic, Dynamic> > &qr, | 
 |         const Matrix< Scalar, Dynamic, 1 >  &diag, | 
 |         const Matrix< Scalar, Dynamic, 1 >  &qtb, | 
 |         Scalar delta, | 
 |         Scalar &par, | 
 |         Matrix< Scalar, Dynamic, 1 >  &x) | 
 |  | 
 | { | 
 |     typedef DenseIndex Index; | 
 |  | 
 |     /* Local variables */ | 
 |     Index j; | 
 |     Scalar fp; | 
 |     Scalar parc, parl; | 
 |     Index iter; | 
 |     Scalar temp, paru; | 
 |     Scalar gnorm; | 
 |     Scalar dxnorm; | 
 |  | 
 |  | 
 |     /* Function Body */ | 
 |     const Scalar dwarf = std::numeric_limits<Scalar>::min(); | 
 |     const Index n = qr.matrixQR().cols(); | 
 |     assert(n==diag.size()); | 
 |     assert(n==qtb.size()); | 
 |  | 
 |     Matrix< Scalar, Dynamic, 1 >  wa1, wa2; | 
 |  | 
 |     /* compute and store in x the gauss-newton direction. if the */ | 
 |     /* jacobian is rank-deficient, obtain a least squares solution. */ | 
 |  | 
 | //    const Index rank = qr.nonzeroPivots(); // exactly double(0.) | 
 |     const Index rank = qr.rank(); // use a threshold | 
 |     wa1 = qtb; | 
 |     wa1.tail(n-rank).setZero(); | 
 |     qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank)); | 
 |  | 
 |     x = qr.colsPermutation()*wa1; | 
 |  | 
 |     /* initialize the iteration counter. */ | 
 |     /* evaluate the function at the origin, and test */ | 
 |     /* for acceptance of the gauss-newton direction. */ | 
 |     iter = 0; | 
 |     wa2 = diag.cwiseProduct(x); | 
 |     dxnorm = wa2.blueNorm(); | 
 |     fp = dxnorm - delta; | 
 |     if (fp <= Scalar(0.1) * delta) { | 
 |         par = 0; | 
 |         return; | 
 |     } | 
 |  | 
 |     /* if the jacobian is not rank deficient, the newton */ | 
 |     /* step provides a lower bound, parl, for the zero of */ | 
 |     /* the function. otherwise set this bound to zero. */ | 
 |     parl = 0.; | 
 |     if (rank==n) { | 
 |         wa1 = qr.colsPermutation().inverse() *  diag.cwiseProduct(wa2)/dxnorm; | 
 |         qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1); | 
 |         temp = wa1.blueNorm(); | 
 |         parl = fp / delta / temp / temp; | 
 |     } | 
 |  | 
 |     /* calculate an upper bound, paru, for the zero of the function. */ | 
 |     for (j = 0; j < n; ++j) | 
 |         wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)]; | 
 |  | 
 |     gnorm = wa1.stableNorm(); | 
 |     paru = gnorm / delta; | 
 |     if (paru == 0.) | 
 |         paru = dwarf / std::min(delta,Scalar(0.1)); | 
 |  | 
 |     /* if the input par lies outside of the interval (parl,paru), */ | 
 |     /* set par to the closer endpoint. */ | 
 |     par = std::max(par,parl); | 
 |     par = std::min(par,paru); | 
 |     if (par == 0.) | 
 |         par = gnorm / dxnorm; | 
 |  | 
 |     /* beginning of an iteration. */ | 
 |     Matrix< Scalar, Dynamic, Dynamic > s = qr.matrixQR(); | 
 |     while (true) { | 
 |         ++iter; | 
 |  | 
 |         /* evaluate the function at the current value of par. */ | 
 |         if (par == 0.) | 
 |             par = std::max(dwarf,Scalar(.001) * paru); /* Computing MAX */ | 
 |         wa1 = ei_sqrt(par)* diag; | 
 |  | 
 |         Matrix< Scalar, Dynamic, 1 > sdiag(n); | 
 |         ei_qrsolv<Scalar>(s, qr.colsPermutation().indices(), wa1, qtb, x, sdiag); | 
 |  | 
 |         wa2 = diag.cwiseProduct(x); | 
 |         dxnorm = wa2.blueNorm(); | 
 |         temp = fp; | 
 |         fp = dxnorm - delta; | 
 |  | 
 |         /* if the function is small enough, accept the current value */ | 
 |         /* of par. also test for the exceptional cases where parl */ | 
 |         /* is zero or the number of iterations has reached 10. */ | 
 |         if (ei_abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10) | 
 |             break; | 
 |  | 
 |         /* compute the newton correction. */ | 
 |         wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm); | 
 |         // we could almost use this here, but the diagonal is outside qr, in sdiag[] | 
 |         // qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1); | 
 |         for (j = 0; j < n; ++j) { | 
 |             wa1[j] /= sdiag[j]; | 
 |             temp = wa1[j]; | 
 |             for (Index i = j+1; i < n; ++i) | 
 |                 wa1[i] -= s(i,j) * temp; | 
 |         } | 
 |         temp = wa1.blueNorm(); | 
 |         parc = fp / delta / temp / temp; | 
 |  | 
 |         /* depending on the sign of the function, update parl or paru. */ | 
 |         if (fp > 0.) | 
 |             parl = std::max(parl,par); | 
 |         if (fp < 0.) | 
 |             paru = std::min(paru,par); | 
 |  | 
 |         /* compute an improved estimate for par. */ | 
 |         par = std::max(parl,par+parc); | 
 |     } | 
 |     if (iter == 0) | 
 |         par = 0.; | 
 |     return; | 
 | } | 
 |  |