|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <unsupported/Eigen/AutoDiff> | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | //   return x+std::sin(y); | 
|  | EIGEN_ASM_COMMENT("mybegin"); | 
|  | return static_cast<Scalar>(x*2 - std::pow(x,2) + 2*std::sqrt(y*y) - 4 * std::sin(x) + 2 * std::cos(y) - std::exp(-0.5*x*x)); | 
|  | //return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2; | 
|  | EIGEN_ASM_COMMENT("myend"); | 
|  | } | 
|  |  | 
|  | template<typename _Scalar, int NX=Dynamic, int NY=Dynamic> | 
|  | struct TestFunc1 | 
|  | { | 
|  | typedef _Scalar Scalar; | 
|  | enum { | 
|  | InputsAtCompileTime = NX, | 
|  | ValuesAtCompileTime = NY | 
|  | }; | 
|  | typedef Matrix<Scalar,InputsAtCompileTime,1> InputType; | 
|  | typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType; | 
|  | typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType; | 
|  |  | 
|  | int m_inputs, m_values; | 
|  |  | 
|  | TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} | 
|  | TestFunc1(int inputs, int values) : m_inputs(inputs), m_values(values) {} | 
|  |  | 
|  | int inputs() const { return m_inputs; } | 
|  | int values() const { return m_values; } | 
|  |  | 
|  | template<typename T> | 
|  | void operator() (const Matrix<T,InputsAtCompileTime,1>& x, Matrix<T,ValuesAtCompileTime,1>* _v) const | 
|  | { | 
|  | Matrix<T,ValuesAtCompileTime,1>& v = *_v; | 
|  |  | 
|  | v[0] = 2 * x[0] * x[0] + x[0] * x[1]; | 
|  | v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1]; | 
|  | if(inputs()>2) | 
|  | { | 
|  | v[0] += 0.5 * x[2]; | 
|  | v[1] += x[2]; | 
|  | } | 
|  | if(values()>2) | 
|  | { | 
|  | v[2] = 3 * x[1] * x[0] * x[0]; | 
|  | } | 
|  | if (inputs()>2 && values()>2) | 
|  | v[2] *= x[2]; | 
|  | } | 
|  |  | 
|  | void operator() (const InputType& x, ValueType* v, JacobianType* _j) const | 
|  | { | 
|  | (*this)(x, v); | 
|  |  | 
|  | if(_j) | 
|  | { | 
|  | JacobianType& j = *_j; | 
|  |  | 
|  | j(0,0) = 4 * x[0] + x[1]; | 
|  | j(1,0) = 3 * x[1]; | 
|  |  | 
|  | j(0,1) = x[0]; | 
|  | j(1,1) = 3 * x[0] + 2 * 0.5 * x[1]; | 
|  |  | 
|  | if (inputs()>2) | 
|  | { | 
|  | j(0,2) = 0.5; | 
|  | j(1,2) = 1; | 
|  | } | 
|  | if(values()>2) | 
|  | { | 
|  | j(2,0) = 3 * x[1] * 2 * x[0]; | 
|  | j(2,1) = 3 * x[0] * x[0]; | 
|  | } | 
|  | if (inputs()>2 && values()>2) | 
|  | { | 
|  | j(2,0) *= x[2]; | 
|  | j(2,1) *= x[2]; | 
|  |  | 
|  | j(2,2) = 3 * x[1] * x[0] * x[0]; | 
|  | j(2,2) = 3 * x[1] * x[0] * x[0]; | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Func> void forward_jacobian(const Func& f) | 
|  | { | 
|  | typename Func::InputType x = Func::InputType::Random(f.inputs()); | 
|  | typename Func::ValueType y(f.values()), yref(f.values()); | 
|  | typename Func::JacobianType j(f.values(),f.inputs()), jref(f.values(),f.inputs()); | 
|  |  | 
|  | jref.setZero(); | 
|  | yref.setZero(); | 
|  | f(x,&yref,&jref); | 
|  | //     std::cerr << y.transpose() << "\n\n";; | 
|  | //     std::cerr << j << "\n\n";; | 
|  |  | 
|  | j.setZero(); | 
|  | y.setZero(); | 
|  | AutoDiffJacobian<Func> autoj(f); | 
|  | autoj(x, &y, &j); | 
|  | //     std::cerr << y.transpose() << "\n\n";; | 
|  | //     std::cerr << j << "\n\n";; | 
|  |  | 
|  | VERIFY_IS_APPROX(y, yref); | 
|  | VERIFY_IS_APPROX(j, jref); | 
|  | } | 
|  |  | 
|  | void test_autodiff_scalar() | 
|  | { | 
|  | std::cerr << foo<float>(1,2) << "\n"; | 
|  | typedef AutoDiffScalar<Vector2f> AD; | 
|  | AD ax(1,Vector2f::UnitX()); | 
|  | AD ay(2,Vector2f::UnitY()); | 
|  | foo<AD>(ax,ay); | 
|  | std::cerr << foo<AD>(ax,ay).value() << " <> " | 
|  | << foo<AD>(ax,ay).derivatives().transpose() << "\n\n"; | 
|  | } | 
|  |  | 
|  | void test_autodiff_jacobian() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) )); | 
|  | CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) )); | 
|  | CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) )); | 
|  | CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) )); | 
|  | CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) )); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_autodiff() | 
|  | { | 
|  | test_autodiff_scalar(); | 
|  | test_autodiff_jacobian(); | 
|  | } | 
|  |  |