| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/Polynomials> | 
 | #include <iostream> | 
 |  | 
 | using namespace std; | 
 |  | 
 | template<int Size> | 
 | struct ei_increment_if_fixed_size | 
 | { | 
 |   enum { | 
 |     ret = (Size == Dynamic) ? Dynamic : Size+1 | 
 |   }; | 
 | }; | 
 |  | 
 | template<typename _Scalar, int _Deg> | 
 | void realRoots_to_monicPolynomial_test(int deg) | 
 | { | 
 |   typedef ei_increment_if_fixed_size<_Deg>            Dim; | 
 |   typedef Matrix<_Scalar,Dim::ret,1>                  PolynomialType; | 
 |   typedef Matrix<_Scalar,_Deg,1>                      EvalRootsType; | 
 |  | 
 |   PolynomialType pols(deg+1); | 
 |   EvalRootsType roots = EvalRootsType::Random(deg); | 
 |   roots_to_monicPolynomial( roots, pols ); | 
 |  | 
 |   EvalRootsType evr( deg ); | 
 |   for( int i=0; i<roots.size(); ++i ){ | 
 |     evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } | 
 |  | 
 |   bool evalToZero = evr.isZero( test_precision<_Scalar>() ); | 
 |   if( !evalToZero ){ | 
 |     cerr << evr.transpose() << endl; } | 
 |   VERIFY( evalToZero ); | 
 | } | 
 |  | 
 | template<typename _Scalar> void realRoots_to_monicPolynomial_scalar() | 
 | { | 
 |   CALL_SUBTEST_2( (realRoots_to_monicPolynomial_test<_Scalar,2>(2)) ); | 
 |   CALL_SUBTEST_3( (realRoots_to_monicPolynomial_test<_Scalar,3>(3)) ); | 
 |   CALL_SUBTEST_4( (realRoots_to_monicPolynomial_test<_Scalar,4>(4)) ); | 
 |   CALL_SUBTEST_5( (realRoots_to_monicPolynomial_test<_Scalar,5>(5)) ); | 
 |   CALL_SUBTEST_6( (realRoots_to_monicPolynomial_test<_Scalar,6>(6)) ); | 
 |   CALL_SUBTEST_7( (realRoots_to_monicPolynomial_test<_Scalar,7>(7)) ); | 
 |   CALL_SUBTEST_8( (realRoots_to_monicPolynomial_test<_Scalar,17>(17)) ); | 
 |  | 
 |   CALL_SUBTEST_9( (realRoots_to_monicPolynomial_test<_Scalar,Dynamic>( | 
 |           ei_random<int>(18,26) )) ); | 
 | } | 
 |  | 
 |  | 
 |  | 
 |  | 
 | template<typename _Scalar, int _Deg> | 
 | void CauchyBounds(int deg) | 
 | { | 
 |   typedef ei_increment_if_fixed_size<_Deg>            Dim; | 
 |   typedef Matrix<_Scalar,Dim::ret,1>                  PolynomialType; | 
 |   typedef Matrix<_Scalar,_Deg,1>                      EvalRootsType; | 
 |  | 
 |   PolynomialType pols(deg+1); | 
 |   EvalRootsType roots = EvalRootsType::Random(deg); | 
 |   roots_to_monicPolynomial( roots, pols ); | 
 |   _Scalar M = cauchy_max_bound( pols ); | 
 |   _Scalar m = cauchy_min_bound( pols ); | 
 |   _Scalar Max = roots.array().abs().maxCoeff(); | 
 |   _Scalar min = roots.array().abs().minCoeff(); | 
 |   bool eval = (M >= Max) && (m <= min); | 
 |   if( !eval ) | 
 |   { | 
 |     cerr << "Roots: " << roots << endl; | 
 |     cerr << "Bounds: (" << m << ", " << M << ")" << endl; | 
 |     cerr << "Min,Max: (" << min << ", " << Max << ")" << endl; | 
 |   } | 
 |   VERIFY( eval ); | 
 | } | 
 |  | 
 | template<typename _Scalar> void CauchyBounds_scalar() | 
 | { | 
 |   CALL_SUBTEST_2( (CauchyBounds<_Scalar,2>(2)) ); | 
 |   CALL_SUBTEST_3( (CauchyBounds<_Scalar,3>(3)) ); | 
 |   CALL_SUBTEST_4( (CauchyBounds<_Scalar,4>(4)) ); | 
 |   CALL_SUBTEST_5( (CauchyBounds<_Scalar,5>(5)) ); | 
 |   CALL_SUBTEST_6( (CauchyBounds<_Scalar,6>(6)) ); | 
 |   CALL_SUBTEST_7( (CauchyBounds<_Scalar,7>(7)) ); | 
 |   CALL_SUBTEST_8( (CauchyBounds<_Scalar,17>(17)) ); | 
 |  | 
 |   CALL_SUBTEST_9( (CauchyBounds<_Scalar,Dynamic>( | 
 |           ei_random<int>(18,26) )) ); | 
 | } | 
 |  | 
 | void test_polynomialutils() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) | 
 |   { | 
 |     realRoots_to_monicPolynomial_scalar<double>(); | 
 |     realRoots_to_monicPolynomial_scalar<float>(); | 
 |     CauchyBounds_scalar<double>(); | 
 |     CauchyBounds_scalar<float>(); | 
 |   } | 
 | } |