| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_MATRIXBASE_H |
| #define EIGEN_MATRIXBASE_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \class MatrixBase |
| * \ingroup Core_Module |
| * |
| * \brief Base class for all dense matrices, vectors, and expressions |
| * |
| * This class is the base that is inherited by all matrix, vector, and related expression |
| * types. Most of the Eigen API is contained in this class, and its base classes. Other important |
| * classes for the Eigen API are Matrix, and VectorwiseOp. |
| * |
| * Note that some methods are defined in other modules such as the \ref LU_Module LU module |
| * for all functions related to matrix inversions. |
| * |
| * \tparam Derived is the derived type, e.g. a matrix type, or an expression, etc. |
| * |
| * When writing a function taking Eigen objects as argument, if you want your function |
| * to take as argument any matrix, vector, or expression, just let it take a |
| * MatrixBase argument. As an example, here is a function printFirstRow which, given |
| * a matrix, vector, or expression \a x, prints the first row of \a x. |
| * |
| * \code |
| template<typename Derived> |
| void printFirstRow(const Eigen::MatrixBase<Derived>& x) |
| { |
| cout << x.row(0) << endl; |
| } |
| * \endcode |
| * |
| * This class can be extended with the help of the plugin mechanism described on the page |
| * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN. |
| * |
| * \sa \blank \ref TopicClassHierarchy |
| */ |
| template <typename Derived> |
| class MatrixBase : public DenseBase<Derived> { |
| public: |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| typedef MatrixBase StorageBaseType; |
| typedef typename internal::traits<Derived>::StorageKind StorageKind; |
| typedef typename internal::traits<Derived>::StorageIndex StorageIndex; |
| typedef typename internal::traits<Derived>::Scalar Scalar; |
| typedef typename internal::packet_traits<Scalar>::type PacketScalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| typedef DenseBase<Derived> Base; |
| using Base::ColsAtCompileTime; |
| using Base::Flags; |
| using Base::IsVectorAtCompileTime; |
| using Base::MaxColsAtCompileTime; |
| using Base::MaxRowsAtCompileTime; |
| using Base::MaxSizeAtCompileTime; |
| using Base::RowsAtCompileTime; |
| using Base::SizeAtCompileTime; |
| |
| using Base::coeff; |
| using Base::coeffRef; |
| using Base::cols; |
| using Base::const_cast_derived; |
| using Base::derived; |
| using Base::eval; |
| using Base::lazyAssign; |
| using Base::rows; |
| using Base::size; |
| using Base::operator-; |
| using Base::operator+=; |
| using Base::operator-=; |
| using Base::operator*=; |
| using Base::operator/=; |
| |
| typedef typename Base::CoeffReturnType CoeffReturnType; |
| typedef typename Base::ConstTransposeReturnType ConstTransposeReturnType; |
| typedef typename Base::RowXpr RowXpr; |
| typedef typename Base::ColXpr ColXpr; |
| #endif // not EIGEN_PARSED_BY_DOXYGEN |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** type of the equivalent square matrix */ |
| typedef Matrix<Scalar, internal::max_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime), |
| internal::max_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime)> |
| SquareMatrixType; |
| #endif // not EIGEN_PARSED_BY_DOXYGEN |
| |
| /** \returns the size of the main diagonal, which is min(rows(),cols()). |
| * \sa rows(), cols(), SizeAtCompileTime. */ |
| EIGEN_DEVICE_FUNC inline Index diagonalSize() const { return (numext::mini)(rows(), cols()); } |
| |
| typedef typename Base::PlainObject PlainObject; |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** \internal Represents a matrix with all coefficients equal to one another*/ |
| typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> ConstantReturnType; |
| /** \internal the return type of MatrixBase::adjoint() */ |
| typedef std::conditional_t<NumTraits<Scalar>::IsComplex, |
| CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>, |
| ConstTransposeReturnType> |
| AdjointReturnType; |
| /** \internal Return type of eigenvalues() */ |
| typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> |
| EigenvaluesReturnType; |
| /** \internal the return type of identity */ |
| typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>, PlainObject> IdentityReturnType; |
| /** \internal the return type of unit vectors */ |
| typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>, |
| internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime> |
| BasisReturnType; |
| #endif // not EIGEN_PARSED_BY_DOXYGEN |
| |
| #define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase |
| #define EIGEN_DOC_UNARY_ADDONS(X, Y) |
| #include "../plugins/CommonCwiseBinaryOps.inc" |
| #include "../plugins/MatrixCwiseUnaryOps.inc" |
| #include "../plugins/MatrixCwiseBinaryOps.inc" |
| #ifdef EIGEN_MATRIXBASE_PLUGIN |
| #include EIGEN_MATRIXBASE_PLUGIN |
| #endif |
| #undef EIGEN_CURRENT_STORAGE_BASE_CLASS |
| #undef EIGEN_DOC_UNARY_ADDONS |
| |
| /** Special case of the template operator=, in order to prevent the compiler |
| * from generating a default operator= (issue hit with g++ 4.1) |
| */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const MatrixBase& other); |
| |
| // We cannot inherit here via Base::operator= since it is causing |
| // trouble with MSVC. |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const DenseBase<OtherDerived>& other); |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC Derived& operator=(const EigenBase<OtherDerived>& other); |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC Derived& operator=(const ReturnByValue<OtherDerived>& other); |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator+=(const MatrixBase<OtherDerived>& other); |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator-=(const MatrixBase<OtherDerived>& other); |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC const Product<Derived, OtherDerived> operator*(const MatrixBase<OtherDerived>& other) const; |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC const Product<Derived, OtherDerived, LazyProduct> lazyProduct( |
| const MatrixBase<OtherDerived>& other) const; |
| |
| template <typename OtherDerived> |
| Derived& operator*=(const EigenBase<OtherDerived>& other); |
| |
| template <typename OtherDerived> |
| void applyOnTheLeft(const EigenBase<OtherDerived>& other); |
| |
| template <typename OtherDerived> |
| void applyOnTheRight(const EigenBase<OtherDerived>& other); |
| |
| template <typename DiagonalDerived> |
| EIGEN_DEVICE_FUNC const Product<Derived, DiagonalDerived, LazyProduct> operator*( |
| const DiagonalBase<DiagonalDerived>& diagonal) const; |
| |
| template <typename SkewDerived> |
| EIGEN_DEVICE_FUNC const Product<Derived, SkewDerived, LazyProduct> operator*( |
| const SkewSymmetricBase<SkewDerived>& skew) const; |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar, |
| typename internal::traits<OtherDerived>::Scalar>::ReturnType |
| dot(const MatrixBase<OtherDerived>& other) const; |
| |
| EIGEN_DEVICE_FUNC RealScalar squaredNorm() const; |
| EIGEN_DEVICE_FUNC RealScalar norm() const; |
| RealScalar stableNorm() const; |
| RealScalar blueNorm() const; |
| RealScalar hypotNorm() const; |
| EIGEN_DEVICE_FUNC const PlainObject normalized() const; |
| EIGEN_DEVICE_FUNC const PlainObject stableNormalized() const; |
| EIGEN_DEVICE_FUNC void normalize(); |
| EIGEN_DEVICE_FUNC void stableNormalize(); |
| |
| EIGEN_DEVICE_FUNC const AdjointReturnType adjoint() const; |
| EIGEN_DEVICE_FUNC void adjointInPlace(); |
| |
| typedef Diagonal<Derived> DiagonalReturnType; |
| EIGEN_DEVICE_FUNC DiagonalReturnType diagonal(); |
| |
| typedef Diagonal<const Derived> ConstDiagonalReturnType; |
| EIGEN_DEVICE_FUNC const ConstDiagonalReturnType diagonal() const; |
| |
| template <int Index> |
| EIGEN_DEVICE_FUNC Diagonal<Derived, Index> diagonal(); |
| |
| template <int Index> |
| EIGEN_DEVICE_FUNC const Diagonal<const Derived, Index> diagonal() const; |
| |
| EIGEN_DEVICE_FUNC Diagonal<Derived, DynamicIndex> diagonal(Index index); |
| EIGEN_DEVICE_FUNC const Diagonal<const Derived, DynamicIndex> diagonal(Index index) const; |
| |
| template <unsigned int Mode> |
| struct TriangularViewReturnType { |
| typedef TriangularView<Derived, Mode> Type; |
| }; |
| template <unsigned int Mode> |
| struct ConstTriangularViewReturnType { |
| typedef const TriangularView<const Derived, Mode> Type; |
| }; |
| |
| template <unsigned int Mode> |
| EIGEN_DEVICE_FUNC typename TriangularViewReturnType<Mode>::Type triangularView(); |
| template <unsigned int Mode> |
| EIGEN_DEVICE_FUNC typename ConstTriangularViewReturnType<Mode>::Type triangularView() const; |
| |
| template <unsigned int UpLo> |
| struct SelfAdjointViewReturnType { |
| typedef SelfAdjointView<Derived, UpLo> Type; |
| }; |
| template <unsigned int UpLo> |
| struct ConstSelfAdjointViewReturnType { |
| typedef const SelfAdjointView<const Derived, UpLo> Type; |
| }; |
| |
| template <unsigned int UpLo> |
| EIGEN_DEVICE_FUNC typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView(); |
| template <unsigned int UpLo> |
| EIGEN_DEVICE_FUNC typename ConstSelfAdjointViewReturnType<UpLo>::Type selfadjointView() const; |
| |
| const SparseView<Derived> sparseView( |
| const Scalar& m_reference = Scalar(0), |
| const typename NumTraits<Scalar>::Real& m_epsilon = NumTraits<Scalar>::dummy_precision()) const; |
| EIGEN_DEVICE_FUNC static const IdentityReturnType Identity(); |
| EIGEN_DEVICE_FUNC static const IdentityReturnType Identity(Index rows, Index cols); |
| EIGEN_DEVICE_FUNC static const BasisReturnType Unit(Index size, Index i); |
| EIGEN_DEVICE_FUNC static const BasisReturnType Unit(Index i); |
| EIGEN_DEVICE_FUNC static const BasisReturnType UnitX(); |
| EIGEN_DEVICE_FUNC static const BasisReturnType UnitY(); |
| EIGEN_DEVICE_FUNC static const BasisReturnType UnitZ(); |
| EIGEN_DEVICE_FUNC static const BasisReturnType UnitW(); |
| |
| EIGEN_DEVICE_FUNC const DiagonalWrapper<const Derived> asDiagonal() const; |
| const PermutationWrapper<const Derived> asPermutation() const; |
| EIGEN_DEVICE_FUNC const SkewSymmetricWrapper<const Derived> asSkewSymmetric() const; |
| |
| EIGEN_DEVICE_FUNC Derived& setIdentity(); |
| EIGEN_DEVICE_FUNC Derived& setIdentity(Index rows, Index cols); |
| EIGEN_DEVICE_FUNC Derived& setUnit(Index i); |
| EIGEN_DEVICE_FUNC Derived& setUnit(Index newSize, Index i); |
| |
| bool isIdentity(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| bool isDiagonal(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| |
| bool isUpperTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| bool isLowerTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| |
| bool isSkewSymmetric(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| |
| template <typename OtherDerived> |
| bool isOrthogonal(const MatrixBase<OtherDerived>& other, |
| const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| bool isUnitary(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; |
| |
| /** \returns true if each coefficients of \c *this and \a other are all exactly equal. |
| * \warning When using floating point scalar values you probably should rather use a |
| * fuzzy comparison such as isApprox() |
| * \sa isApprox(), operator!= */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline bool operator==(const MatrixBase<OtherDerived>& other) const { |
| return cwiseEqual(other).all(); |
| } |
| |
| /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other. |
| * \warning When using floating point scalar values you probably should rather use a |
| * fuzzy comparison such as isApprox() |
| * \sa isApprox(), operator== */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline bool operator!=(const MatrixBase<OtherDerived>& other) const { |
| return cwiseNotEqual(other).any(); |
| } |
| |
| NoAlias<Derived, Eigen::MatrixBase> EIGEN_DEVICE_FUNC noalias(); |
| |
| // TODO forceAlignedAccess is temporarily disabled |
| // Need to find a nicer workaround. |
| inline const Derived& forceAlignedAccess() const { return derived(); } |
| inline Derived& forceAlignedAccess() { return derived(); } |
| template <bool Enable> |
| inline const Derived& forceAlignedAccessIf() const { |
| return derived(); |
| } |
| template <bool Enable> |
| inline Derived& forceAlignedAccessIf() { |
| return derived(); |
| } |
| |
| EIGEN_DEVICE_FUNC Scalar trace() const; |
| |
| template <int p> |
| EIGEN_DEVICE_FUNC RealScalar lpNorm() const; |
| |
| EIGEN_DEVICE_FUNC MatrixBase<Derived>& matrix() { return *this; } |
| EIGEN_DEVICE_FUNC const MatrixBase<Derived>& matrix() const { return *this; } |
| |
| /** \returns an \link Eigen::ArrayBase Array \endlink expression of this matrix |
| * \sa ArrayBase::matrix() */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper<Derived> array() { return ArrayWrapper<Derived>(derived()); } |
| /** \returns a const \link Eigen::ArrayBase Array \endlink expression of this matrix |
| * \sa ArrayBase::matrix() */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArrayWrapper<const Derived> array() const { |
| return ArrayWrapper<const Derived>(derived()); |
| } |
| |
| /////////// LU module /////////// |
| |
| template <typename PermutationIndex = DefaultPermutationIndex> |
| inline const FullPivLU<PlainObject, PermutationIndex> fullPivLu() const; |
| template <typename PermutationIndex = DefaultPermutationIndex> |
| inline const PartialPivLU<PlainObject, PermutationIndex> partialPivLu() const; |
| |
| template <typename PermutationIndex = DefaultPermutationIndex> |
| inline const PartialPivLU<PlainObject, PermutationIndex> lu() const; |
| |
| EIGEN_DEVICE_FUNC inline const Inverse<Derived> inverse() const; |
| |
| template <typename ResultType> |
| inline void computeInverseAndDetWithCheck( |
| ResultType& inverse, typename ResultType::Scalar& determinant, bool& invertible, |
| const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()) const; |
| |
| template <typename ResultType> |
| inline void computeInverseWithCheck( |
| ResultType& inverse, bool& invertible, |
| const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()) const; |
| |
| EIGEN_DEVICE_FUNC Scalar determinant() const; |
| |
| /////////// Cholesky module /////////// |
| |
| inline const LLT<PlainObject> llt() const; |
| inline const LDLT<PlainObject> ldlt() const; |
| |
| /////////// QR module /////////// |
| |
| inline const HouseholderQR<PlainObject> householderQr() const; |
| template <typename PermutationIndex = DefaultPermutationIndex> |
| inline const ColPivHouseholderQR<PlainObject, PermutationIndex> colPivHouseholderQr() const; |
| template <typename PermutationIndex = DefaultPermutationIndex> |
| inline const FullPivHouseholderQR<PlainObject, PermutationIndex> fullPivHouseholderQr() const; |
| template <typename PermutationIndex = DefaultPermutationIndex> |
| inline const CompleteOrthogonalDecomposition<PlainObject, PermutationIndex> completeOrthogonalDecomposition() const; |
| |
| /////////// Eigenvalues module /////////// |
| |
| inline EigenvaluesReturnType eigenvalues() const; |
| inline RealScalar operatorNorm() const; |
| |
| /////////// SVD module /////////// |
| |
| template <int Options = 0> |
| inline JacobiSVD<PlainObject, Options> jacobiSvd() const; |
| template <int Options = 0> |
| EIGEN_DEPRECATED inline JacobiSVD<PlainObject, Options> jacobiSvd(unsigned int computationOptions) const; |
| |
| template <int Options = 0> |
| inline BDCSVD<PlainObject, Options> bdcSvd() const; |
| template <int Options = 0> |
| EIGEN_DEPRECATED inline BDCSVD<PlainObject, Options> bdcSvd(unsigned int computationOptions) const; |
| |
| /////////// Geometry module /////////// |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline typename internal::cross_impl<Derived, OtherDerived>::return_type cross( |
| const MatrixBase<OtherDerived>& other) const; |
| |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline PlainObject cross3(const MatrixBase<OtherDerived>& other) const; |
| |
| EIGEN_DEVICE_FUNC inline PlainObject unitOrthogonal(void) const; |
| |
| EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline Matrix<Scalar, 3, 1> eulerAngles(Index a0, Index a1, Index a2) const; |
| |
| EIGEN_DEVICE_FUNC inline Matrix<Scalar, 3, 1> canonicalEulerAngles(Index a0, Index a1, Index a2) const; |
| |
| // put this as separate enum value to work around possible GCC 4.3 bug (?) |
| enum { |
| HomogeneousReturnTypeDirection = |
| ColsAtCompileTime == 1 && RowsAtCompileTime == 1 |
| ? ((internal::traits<Derived>::Flags & RowMajorBit) == RowMajorBit ? Horizontal : Vertical) |
| : ColsAtCompileTime == 1 ? Vertical |
| : Horizontal |
| }; |
| typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> HomogeneousReturnType; |
| EIGEN_DEVICE_FUNC inline HomogeneousReturnType homogeneous() const; |
| |
| enum { SizeMinusOne = SizeAtCompileTime == Dynamic ? Dynamic : SizeAtCompileTime - 1 }; |
| typedef Block<const Derived, internal::traits<Derived>::ColsAtCompileTime == 1 ? SizeMinusOne : 1, |
| internal::traits<Derived>::ColsAtCompileTime == 1 ? 1 : SizeMinusOne> |
| ConstStartMinusOne; |
| typedef EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(ConstStartMinusOne, Scalar, quotient) HNormalizedReturnType; |
| EIGEN_DEVICE_FUNC inline const HNormalizedReturnType hnormalized() const; |
| |
| ////////// Householder module /////////// |
| |
| EIGEN_DEVICE_FUNC void makeHouseholderInPlace(Scalar& tau, RealScalar& beta); |
| template <typename EssentialPart> |
| EIGEN_DEVICE_FUNC void makeHouseholder(EssentialPart& essential, Scalar& tau, RealScalar& beta) const; |
| template <typename EssentialPart> |
| EIGEN_DEVICE_FUNC void applyHouseholderOnTheLeft(const EssentialPart& essential, const Scalar& tau, |
| Scalar* workspace); |
| template <typename EssentialPart> |
| EIGEN_DEVICE_FUNC void applyHouseholderOnTheRight(const EssentialPart& essential, const Scalar& tau, |
| Scalar* workspace); |
| |
| ///////// Jacobi module ///////// |
| |
| template <typename OtherScalar> |
| EIGEN_DEVICE_FUNC void applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j); |
| template <typename OtherScalar> |
| EIGEN_DEVICE_FUNC void applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j); |
| |
| ///////// SparseCore module ///////// |
| |
| template <typename OtherDerived> |
| EIGEN_STRONG_INLINE const typename SparseMatrixBase<OtherDerived>::template CwiseProductDenseReturnType<Derived>::Type |
| cwiseProduct(const SparseMatrixBase<OtherDerived>& other) const { |
| return other.cwiseProduct(derived()); |
| } |
| |
| ///////// MatrixFunctions module ///////// |
| |
| typedef typename internal::stem_function<Scalar>::type StemFunction; |
| #define EIGEN_MATRIX_FUNCTION(ReturnType, Name, Description) \ |
| /** \returns an expression of the matrix Description of \c *this. \brief This function requires the <a \ |
| * href="unsupported/group__MatrixFunctions__Module.html"> unsupported MatrixFunctions module</a>. To compute the \ |
| * coefficient-wise Description use ArrayBase::##Name . */ \ |
| const ReturnType<Derived> Name() const; |
| #define EIGEN_MATRIX_FUNCTION_1(ReturnType, Name, Description, Argument) \ |
| /** \returns an expression of the matrix Description of \c *this. \brief This function requires the <a \ |
| * href="unsupported/group__MatrixFunctions__Module.html"> unsupported MatrixFunctions module</a>. To compute the \ |
| * coefficient-wise Description use ArrayBase::##Name . */ \ |
| const ReturnType<Derived> Name(Argument) const; |
| |
| EIGEN_MATRIX_FUNCTION(MatrixExponentialReturnValue, exp, exponential) |
| /** \brief Helper function for the <a href="unsupported/group__MatrixFunctions__Module.html"> unsupported |
| * MatrixFunctions module</a>.*/ |
| const MatrixFunctionReturnValue<Derived> matrixFunction(StemFunction f) const; |
| EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, cosh, hyperbolic cosine) |
| EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, sinh, hyperbolic sine) |
| EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, atanh, inverse hyperbolic cosine) |
| EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, acosh, inverse hyperbolic cosine) |
| EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, asinh, inverse hyperbolic sine) |
| EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, cos, cosine) |
| EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, sin, sine) |
| EIGEN_MATRIX_FUNCTION(MatrixSquareRootReturnValue, sqrt, square root) |
| EIGEN_MATRIX_FUNCTION(MatrixLogarithmReturnValue, log, logarithm) |
| EIGEN_MATRIX_FUNCTION_1(MatrixPowerReturnValue, pow, power to \c p, const RealScalar& p) |
| EIGEN_MATRIX_FUNCTION_1(MatrixComplexPowerReturnValue, pow, power to \c p, const std::complex<RealScalar>& p) |
| |
| protected: |
| EIGEN_DEFAULT_COPY_CONSTRUCTOR(MatrixBase) |
| EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(MatrixBase) |
| |
| private: |
| EIGEN_DEVICE_FUNC explicit MatrixBase(int); |
| EIGEN_DEVICE_FUNC MatrixBase(int, int); |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC explicit MatrixBase(const MatrixBase<OtherDerived>&); |
| |
| protected: |
| // mixing arrays and matrices is not legal |
| template <typename OtherDerived> |
| Derived& operator+=(const ArrayBase<OtherDerived>&) { |
| EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar)) == -1, |
| YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); |
| return *this; |
| } |
| // mixing arrays and matrices is not legal |
| template <typename OtherDerived> |
| Derived& operator-=(const ArrayBase<OtherDerived>&) { |
| EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar)) == -1, |
| YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); |
| return *this; |
| } |
| }; |
| |
| /*************************************************************************** |
| * Implementation of matrix base methods |
| ***************************************************************************/ |
| |
| /** replaces \c *this by \c *this * \a other. |
| * |
| * \returns a reference to \c *this |
| * |
| * Example: \include MatrixBase_applyOnTheRight.cpp |
| * Output: \verbinclude MatrixBase_applyOnTheRight.out |
| */ |
| template <typename Derived> |
| template <typename OtherDerived> |
| inline Derived& MatrixBase<Derived>::operator*=(const EigenBase<OtherDerived>& other) { |
| other.derived().applyThisOnTheRight(derived()); |
| return derived(); |
| } |
| |
| /** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=(). |
| * |
| * Example: \include MatrixBase_applyOnTheRight.cpp |
| * Output: \verbinclude MatrixBase_applyOnTheRight.out |
| */ |
| template <typename Derived> |
| template <typename OtherDerived> |
| inline void MatrixBase<Derived>::applyOnTheRight(const EigenBase<OtherDerived>& other) { |
| other.derived().applyThisOnTheRight(derived()); |
| } |
| |
| /** replaces \c *this by \a other * \c *this. |
| * |
| * Example: \include MatrixBase_applyOnTheLeft.cpp |
| * Output: \verbinclude MatrixBase_applyOnTheLeft.out |
| */ |
| template <typename Derived> |
| template <typename OtherDerived> |
| inline void MatrixBase<Derived>::applyOnTheLeft(const EigenBase<OtherDerived>& other) { |
| other.derived().applyThisOnTheLeft(derived()); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MATRIXBASE_H |