blob: 37683e3c27269eb8c1ce179711da852ede7e8747 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PRODUCT_H
#define EIGEN_PRODUCT_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
template <typename Lhs, typename Rhs, int Option, typename StorageKind>
class ProductImpl;
namespace internal {
template <typename Lhs, typename Rhs, int Option>
struct traits<Product<Lhs, Rhs, Option>> {
typedef remove_all_t<Lhs> LhsCleaned;
typedef remove_all_t<Rhs> RhsCleaned;
typedef traits<LhsCleaned> LhsTraits;
typedef traits<RhsCleaned> RhsTraits;
typedef MatrixXpr XprKind;
typedef typename ScalarBinaryOpTraits<typename traits<LhsCleaned>::Scalar,
typename traits<RhsCleaned>::Scalar>::ReturnType Scalar;
typedef typename product_promote_storage_type<typename LhsTraits::StorageKind, typename RhsTraits::StorageKind,
internal::product_type<Lhs, Rhs>::ret>::ret StorageKind;
typedef typename promote_index_type<typename LhsTraits::StorageIndex, typename RhsTraits::StorageIndex>::type
StorageIndex;
enum {
RowsAtCompileTime = LhsTraits::RowsAtCompileTime,
ColsAtCompileTime = RhsTraits::ColsAtCompileTime,
MaxRowsAtCompileTime = LhsTraits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = RhsTraits::MaxColsAtCompileTime,
// FIXME: only needed by GeneralMatrixMatrixTriangular
InnerSize = min_size_prefer_fixed(LhsTraits::ColsAtCompileTime, RhsTraits::RowsAtCompileTime),
// The storage order is somewhat arbitrary here. The correct one will be determined through the evaluator.
Flags = (MaxRowsAtCompileTime == 1 && MaxColsAtCompileTime != 1) ? RowMajorBit
: (MaxColsAtCompileTime == 1 && MaxRowsAtCompileTime != 1) ? 0
: (((LhsTraits::Flags & NoPreferredStorageOrderBit) && (RhsTraits::Flags & RowMajorBit)) ||
((RhsTraits::Flags & NoPreferredStorageOrderBit) && (LhsTraits::Flags & RowMajorBit)))
? RowMajorBit
: NoPreferredStorageOrderBit
};
};
struct TransposeProductEnum {
// convenience enumerations to specialize transposed products
enum : int {
Default = 0x00,
Matrix = 0x01,
Permutation = 0x02,
MatrixMatrix = (Matrix << 8) | Matrix,
MatrixPermutation = (Matrix << 8) | Permutation,
PermutationMatrix = (Permutation << 8) | Matrix
};
};
template <typename Xpr>
struct TransposeKind {
static constexpr int Kind = is_matrix_base_xpr<Xpr>::value ? TransposeProductEnum::Matrix
: is_permutation_base_xpr<Xpr>::value ? TransposeProductEnum::Permutation
: TransposeProductEnum::Default;
};
template <typename Lhs, typename Rhs>
struct TransposeProductKind {
static constexpr int Kind = (TransposeKind<Lhs>::Kind << 8) | TransposeKind<Rhs>::Kind;
};
template <typename Lhs, typename Rhs, int Option, int Kind = TransposeProductKind<Lhs, Rhs>::Kind>
struct product_transpose_helper {
// by default, don't optimize the transposed product
using Derived = Product<Lhs, Rhs, Option>;
using Scalar = typename Derived::Scalar;
using TransposeType = Transpose<const Derived>;
using ConjugateTransposeType = CwiseUnaryOp<scalar_conjugate_op<Scalar>, TransposeType>;
using AdjointType = std::conditional_t<NumTraits<Scalar>::IsComplex, ConjugateTransposeType, TransposeType>;
// return (lhs * rhs)^T
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TransposeType run_transpose(const Derived& derived) {
return TransposeType(derived);
}
// return (lhs * rhs)^H
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE AdjointType run_adjoint(const Derived& derived) {
return AdjointType(TransposeType(derived));
}
};
template <typename Lhs, typename Rhs, int Option>
struct product_transpose_helper<Lhs, Rhs, Option, TransposeProductEnum::MatrixMatrix> {
// expand the transposed matrix-matrix product
using Derived = Product<Lhs, Rhs, Option>;
using LhsScalar = typename traits<Lhs>::Scalar;
using LhsTransposeType = typename DenseBase<Lhs>::ConstTransposeReturnType;
using LhsConjugateTransposeType = CwiseUnaryOp<scalar_conjugate_op<LhsScalar>, LhsTransposeType>;
using LhsAdjointType =
std::conditional_t<NumTraits<LhsScalar>::IsComplex, LhsConjugateTransposeType, LhsTransposeType>;
using RhsScalar = typename traits<Rhs>::Scalar;
using RhsTransposeType = typename DenseBase<Rhs>::ConstTransposeReturnType;
using RhsConjugateTransposeType = CwiseUnaryOp<scalar_conjugate_op<RhsScalar>, RhsTransposeType>;
using RhsAdjointType =
std::conditional_t<NumTraits<RhsScalar>::IsComplex, RhsConjugateTransposeType, RhsTransposeType>;
using TransposeType = Product<RhsTransposeType, LhsTransposeType, Option>;
using AdjointType = Product<RhsAdjointType, LhsAdjointType, Option>;
// return rhs^T * lhs^T
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TransposeType run_transpose(const Derived& derived) {
return TransposeType(RhsTransposeType(derived.rhs()), LhsTransposeType(derived.lhs()));
}
// return rhs^H * lhs^H
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE AdjointType run_adjoint(const Derived& derived) {
return AdjointType(RhsAdjointType(RhsTransposeType(derived.rhs())),
LhsAdjointType(LhsTransposeType(derived.lhs())));
}
};
template <typename Lhs, typename Rhs, int Option>
struct product_transpose_helper<Lhs, Rhs, Option, TransposeProductEnum::PermutationMatrix> {
// expand the transposed permutation-matrix product
using Derived = Product<Lhs, Rhs, Option>;
using LhsInverseType = typename PermutationBase<Lhs>::InverseReturnType;
using RhsScalar = typename traits<Rhs>::Scalar;
using RhsTransposeType = typename DenseBase<Rhs>::ConstTransposeReturnType;
using RhsConjugateTransposeType = CwiseUnaryOp<scalar_conjugate_op<RhsScalar>, RhsTransposeType>;
using RhsAdjointType =
std::conditional_t<NumTraits<RhsScalar>::IsComplex, RhsConjugateTransposeType, RhsTransposeType>;
using TransposeType = Product<RhsTransposeType, LhsInverseType, Option>;
using AdjointType = Product<RhsAdjointType, LhsInverseType, Option>;
// return rhs^T * lhs^-1
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TransposeType run_transpose(const Derived& derived) {
return TransposeType(RhsTransposeType(derived.rhs()), LhsInverseType(derived.lhs()));
}
// return rhs^H * lhs^-1
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE AdjointType run_adjoint(const Derived& derived) {
return AdjointType(RhsAdjointType(RhsTransposeType(derived.rhs())), LhsInverseType(derived.lhs()));
}
};
template <typename Lhs, typename Rhs, int Option>
struct product_transpose_helper<Lhs, Rhs, Option, TransposeProductEnum::MatrixPermutation> {
// expand the transposed matrix-permutation product
using Derived = Product<Lhs, Rhs, Option>;
using LhsScalar = typename traits<Lhs>::Scalar;
using LhsTransposeType = typename DenseBase<Lhs>::ConstTransposeReturnType;
using LhsConjugateTransposeType = CwiseUnaryOp<scalar_conjugate_op<LhsScalar>, LhsTransposeType>;
using LhsAdjointType =
std::conditional_t<NumTraits<LhsScalar>::IsComplex, LhsConjugateTransposeType, LhsTransposeType>;
using RhsInverseType = typename PermutationBase<Rhs>::InverseReturnType;
using TransposeType = Product<RhsInverseType, LhsTransposeType, Option>;
using AdjointType = Product<RhsInverseType, LhsAdjointType, Option>;
// return rhs^-1 * lhs^T
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TransposeType run_transpose(const Derived& derived) {
return TransposeType(RhsInverseType(derived.rhs()), LhsTransposeType(derived.lhs()));
}
// return rhs^-1 * lhs^H
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE AdjointType run_adjoint(const Derived& derived) {
return AdjointType(RhsInverseType(derived.rhs()), LhsAdjointType(LhsTransposeType(derived.lhs())));
}
};
} // end namespace internal
/** \class Product
* \ingroup Core_Module
*
* \brief Expression of the product of two arbitrary matrices or vectors
*
* \tparam Lhs_ the type of the left-hand side expression
* \tparam Rhs_ the type of the right-hand side expression
*
* This class represents an expression of the product of two arbitrary matrices.
*
* The other template parameters are:
* \tparam Option can be DefaultProduct, AliasFreeProduct, or LazyProduct
*
*/
template <typename Lhs_, typename Rhs_, int Option>
class Product
: public ProductImpl<Lhs_, Rhs_, Option,
typename internal::product_promote_storage_type<
typename internal::traits<Lhs_>::StorageKind, typename internal::traits<Rhs_>::StorageKind,
internal::product_type<Lhs_, Rhs_>::ret>::ret> {
public:
typedef Lhs_ Lhs;
typedef Rhs_ Rhs;
typedef
typename ProductImpl<Lhs, Rhs, Option,
typename internal::product_promote_storage_type<
typename internal::traits<Lhs>::StorageKind, typename internal::traits<Rhs>::StorageKind,
internal::product_type<Lhs, Rhs>::ret>::ret>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
typedef typename internal::ref_selector<Lhs>::type LhsNested;
typedef typename internal::ref_selector<Rhs>::type RhsNested;
typedef internal::remove_all_t<LhsNested> LhsNestedCleaned;
typedef internal::remove_all_t<RhsNested> RhsNestedCleaned;
using TransposeReturnType = typename internal::product_transpose_helper<Lhs, Rhs, Option>::TransposeType;
using AdjointReturnType = typename internal::product_transpose_helper<Lhs, Rhs, Option>::AdjointType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Product(const Lhs& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs) {
eigen_assert(lhs.cols() == rhs.rows() && "invalid matrix product" &&
"if you wanted a coeff-wise or a dot product use the respective explicit functions");
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const LhsNestedCleaned& lhs() const { return m_lhs; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const RhsNestedCleaned& rhs() const { return m_rhs; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TransposeReturnType transpose() const {
return internal::product_transpose_helper<Lhs, Rhs, Option>::run_transpose(*this);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE AdjointReturnType adjoint() const {
return internal::product_transpose_helper<Lhs, Rhs, Option>::run_adjoint(*this);
}
protected:
LhsNested m_lhs;
RhsNested m_rhs;
};
namespace internal {
template <typename Lhs, typename Rhs, int Option, int ProductTag = internal::product_type<Lhs, Rhs>::ret>
class dense_product_base : public internal::dense_xpr_base<Product<Lhs, Rhs, Option>>::type {};
/** Conversion to scalar for inner-products */
template <typename Lhs, typename Rhs, int Option>
class dense_product_base<Lhs, Rhs, Option, InnerProduct>
: public internal::dense_xpr_base<Product<Lhs, Rhs, Option>>::type {
typedef Product<Lhs, Rhs, Option> ProductXpr;
typedef typename internal::dense_xpr_base<ProductXpr>::type Base;
public:
using Base::derived;
typedef typename Base::Scalar Scalar;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE operator const Scalar() const {
return internal::evaluator<ProductXpr>(derived()).coeff(0, 0);
}
};
} // namespace internal
// Generic API dispatcher
template <typename Lhs, typename Rhs, int Option, typename StorageKind>
class ProductImpl : public internal::generic_xpr_base<Product<Lhs, Rhs, Option>, MatrixXpr, StorageKind>::type {
public:
typedef typename internal::generic_xpr_base<Product<Lhs, Rhs, Option>, MatrixXpr, StorageKind>::type Base;
};
template <typename Lhs, typename Rhs, int Option>
class ProductImpl<Lhs, Rhs, Option, Dense> : public internal::dense_product_base<Lhs, Rhs, Option> {
typedef Product<Lhs, Rhs, Option> Derived;
public:
typedef typename internal::dense_product_base<Lhs, Rhs, Option> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
protected:
enum {
IsOneByOne = (RowsAtCompileTime == 1 || RowsAtCompileTime == Dynamic) &&
(ColsAtCompileTime == 1 || ColsAtCompileTime == Dynamic),
EnableCoeff = IsOneByOne || Option == LazyProduct
};
public:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar coeff(Index row, Index col) const {
EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
eigen_assert((Option == LazyProduct) || (this->rows() == 1 && this->cols() == 1));
return internal::evaluator<Derived>(derived()).coeff(row, col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar coeff(Index i) const {
EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
eigen_assert((Option == LazyProduct) || (this->rows() == 1 && this->cols() == 1));
return internal::evaluator<Derived>(derived()).coeff(i);
}
};
} // end namespace Eigen
#endif // EIGEN_PRODUCT_H