| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SKEWSYMMETRICMATRIX3_H |
| #define EIGEN_SKEWSYMMETRICMATRIX3_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \class SkewSymmetricBase |
| * \ingroup Core_Module |
| * |
| * \brief Base class for skew symmetric matrices and expressions |
| * |
| * This is the base class that is inherited by SkewSymmetricMatrix3 and related expression |
| * types, which internally use a three vector for storing the entries. SkewSymmetric |
| * types always represent square three times three matrices. |
| * |
| * This implementations follows class DiagonalMatrix |
| * |
| * \tparam Derived is the derived type, a SkewSymmetricMatrix3 or SkewSymmetricWrapper. |
| * |
| * \sa class SkewSymmetricMatrix3, class SkewSymmetricWrapper |
| */ |
| template <typename Derived> |
| class SkewSymmetricBase : public EigenBase<Derived> { |
| public: |
| typedef typename internal::traits<Derived>::SkewSymmetricVectorType SkewSymmetricVectorType; |
| typedef typename SkewSymmetricVectorType::Scalar Scalar; |
| typedef typename SkewSymmetricVectorType::RealScalar RealScalar; |
| typedef typename internal::traits<Derived>::StorageKind StorageKind; |
| typedef typename internal::traits<Derived>::StorageIndex StorageIndex; |
| |
| enum { |
| RowsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime, |
| ColsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime, |
| MaxRowsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime, |
| MaxColsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime, |
| IsVectorAtCompileTime = 0, |
| Flags = NoPreferredStorageOrderBit |
| }; |
| |
| typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> |
| DenseMatrixType; |
| typedef DenseMatrixType DenseType; |
| typedef SkewSymmetricMatrix3<Scalar> PlainObject; |
| |
| /** \returns a reference to the derived object. */ |
| EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast<const Derived*>(this); } |
| /** \returns a const reference to the derived object. */ |
| EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast<Derived*>(this); } |
| |
| /** |
| * Constructs a dense matrix from \c *this. Note, this directly returns a dense matrix type, |
| * not an expression. |
| * \returns A dense matrix, with its entries set from the the derived object. */ |
| EIGEN_DEVICE_FUNC DenseMatrixType toDenseMatrix() const { return derived(); } |
| |
| /** Determinant vanishes */ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar determinant() const { return 0; } |
| |
| /** A.transpose() = -A */ |
| EIGEN_DEVICE_FUNC PlainObject transpose() const { return (-vector()).asSkewSymmetric(); } |
| |
| /** \returns the exponential of this matrix using Rodrigues’ formula */ |
| EIGEN_DEVICE_FUNC DenseMatrixType exponential() const { |
| DenseMatrixType retVal = DenseMatrixType::Identity(); |
| const SkewSymmetricVectorType& v = vector(); |
| if (v.isZero()) { |
| return retVal; |
| } |
| const Scalar norm2 = v.squaredNorm(); |
| const Scalar norm = numext::sqrt(norm2); |
| retVal += ((((1 - numext::cos(norm)) / norm2) * derived()) * derived()) + |
| (numext::sin(norm) / norm) * derived().toDenseMatrix(); |
| return retVal; |
| } |
| |
| /** \returns a reference to the derived object's vector of coefficients. */ |
| EIGEN_DEVICE_FUNC inline const SkewSymmetricVectorType& vector() const { return derived().vector(); } |
| /** \returns a const reference to the derived object's vector of coefficients. */ |
| EIGEN_DEVICE_FUNC inline SkewSymmetricVectorType& vector() { return derived().vector(); } |
| |
| /** \returns the number of rows. */ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const { return 3; } |
| /** \returns the number of columns. */ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const { return 3; } |
| |
| /** \returns the matrix product of \c *this by the dense matrix, \a matrix */ |
| template <typename MatrixDerived> |
| EIGEN_DEVICE_FUNC Product<Derived, MatrixDerived, LazyProduct> operator*( |
| const MatrixBase<MatrixDerived>& matrix) const { |
| return Product<Derived, MatrixDerived, LazyProduct>(derived(), matrix.derived()); |
| } |
| |
| /** \returns the matrix product of \c *this by the skew symmetric matrix, \a matrix */ |
| template <typename MatrixDerived> |
| EIGEN_DEVICE_FUNC Product<Derived, MatrixDerived, LazyProduct> operator*( |
| const SkewSymmetricBase<MatrixDerived>& matrix) const { |
| return Product<Derived, MatrixDerived, LazyProduct>(derived(), matrix.derived()); |
| } |
| |
| template <typename OtherDerived> |
| using SkewSymmetricProductReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE( |
| SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, product)>; |
| |
| /** \returns the wedge product of \c *this by the skew symmetric matrix \a other |
| * A wedge B = AB - BA */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC SkewSymmetricProductReturnType<OtherDerived> wedge( |
| const SkewSymmetricBase<OtherDerived>& other) const { |
| return vector().cross(other.vector()).asSkewSymmetric(); |
| } |
| |
| using SkewSymmetricScaleReturnType = |
| SkewSymmetricWrapper<const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(SkewSymmetricVectorType, Scalar, product)>; |
| |
| /** \returns the product of \c *this by the scalar \a scalar */ |
| EIGEN_DEVICE_FUNC inline SkewSymmetricScaleReturnType operator*(const Scalar& scalar) const { |
| return (vector() * scalar).asSkewSymmetric(); |
| } |
| |
| using ScaleSkewSymmetricReturnType = |
| SkewSymmetricWrapper<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar, SkewSymmetricVectorType, product)>; |
| |
| /** \returns the product of a scalar and the skew symmetric matrix \a other */ |
| EIGEN_DEVICE_FUNC friend inline ScaleSkewSymmetricReturnType operator*(const Scalar& scalar, |
| const SkewSymmetricBase& other) { |
| return (scalar * other.vector()).asSkewSymmetric(); |
| } |
| |
| template <typename OtherDerived> |
| using SkewSymmetricSumReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE( |
| SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, sum)>; |
| |
| /** \returns the sum of \c *this and the skew symmetric matrix \a other */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline SkewSymmetricSumReturnType<OtherDerived> operator+( |
| const SkewSymmetricBase<OtherDerived>& other) const { |
| return (vector() + other.vector()).asSkewSymmetric(); |
| } |
| |
| template <typename OtherDerived> |
| using SkewSymmetricDifferenceReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE( |
| SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, difference)>; |
| |
| /** \returns the difference of \c *this and the skew symmetric matrix \a other */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline SkewSymmetricDifferenceReturnType<OtherDerived> operator-( |
| const SkewSymmetricBase<OtherDerived>& other) const { |
| return (vector() - other.vector()).asSkewSymmetric(); |
| } |
| }; |
| |
| /** \class SkewSymmetricMatrix3 |
| * \ingroup Core_Module |
| * |
| * \brief Represents a 3x3 skew symmetric matrix with its storage |
| * |
| * \tparam Scalar_ the type of coefficients |
| * |
| * \sa class SkewSymmetricBase, class SkewSymmetricWrapper |
| */ |
| |
| namespace internal { |
| template <typename Scalar_> |
| struct traits<SkewSymmetricMatrix3<Scalar_>> : traits<Matrix<Scalar_, 3, 3, 0, 3, 3>> { |
| typedef Matrix<Scalar_, 3, 1, 0, 3, 1> SkewSymmetricVectorType; |
| typedef SkewSymmetricShape StorageKind; |
| enum { Flags = LvalueBit | NoPreferredStorageOrderBit | NestByRefBit }; |
| }; |
| } // namespace internal |
| template <typename Scalar_> |
| class SkewSymmetricMatrix3 : public SkewSymmetricBase<SkewSymmetricMatrix3<Scalar_>> { |
| public: |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| typedef typename internal::traits<SkewSymmetricMatrix3>::SkewSymmetricVectorType SkewSymmetricVectorType; |
| typedef const SkewSymmetricMatrix3& Nested; |
| typedef Scalar_ Scalar; |
| typedef typename internal::traits<SkewSymmetricMatrix3>::StorageKind StorageKind; |
| typedef typename internal::traits<SkewSymmetricMatrix3>::StorageIndex StorageIndex; |
| #endif |
| |
| protected: |
| SkewSymmetricVectorType m_vector; |
| |
| public: |
| /** const version of vector(). */ |
| EIGEN_DEVICE_FUNC inline const SkewSymmetricVectorType& vector() const { return m_vector; } |
| /** \returns a reference to the stored vector of coefficients. */ |
| EIGEN_DEVICE_FUNC inline SkewSymmetricVectorType& vector() { return m_vector; } |
| |
| /** Default constructor without initialization */ |
| EIGEN_DEVICE_FUNC inline SkewSymmetricMatrix3() {} |
| |
| /** Constructor from three scalars */ |
| EIGEN_DEVICE_FUNC inline SkewSymmetricMatrix3(const Scalar& x, const Scalar& y, const Scalar& z) |
| : m_vector(x, y, z) {} |
| |
| /** \brief Constructs a SkewSymmetricMatrix3 from an r-value vector type */ |
| EIGEN_DEVICE_FUNC explicit inline SkewSymmetricMatrix3(SkewSymmetricVectorType&& vec) : m_vector(std::move(vec)) {} |
| |
| /** generic constructor from expression of the coefficients */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC explicit inline SkewSymmetricMatrix3(const MatrixBase<OtherDerived>& other) : m_vector(other) {} |
| |
| /** Copy constructor. */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline SkewSymmetricMatrix3(const SkewSymmetricBase<OtherDerived>& other) |
| : m_vector(other.vector()) {} |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** copy constructor. prevent a default copy constructor from hiding the other templated constructor */ |
| inline SkewSymmetricMatrix3(const SkewSymmetricMatrix3& other) : m_vector(other.vector()) {} |
| #endif |
| |
| /** Copy operator. */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC SkewSymmetricMatrix3& operator=(const SkewSymmetricBase<OtherDerived>& other) { |
| m_vector = other.vector(); |
| return *this; |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** This is a special case of the templated operator=. Its purpose is to |
| * prevent a default operator= from hiding the templated operator=. |
| */ |
| EIGEN_DEVICE_FUNC SkewSymmetricMatrix3& operator=(const SkewSymmetricMatrix3& other) { |
| m_vector = other.vector(); |
| return *this; |
| } |
| #endif |
| |
| typedef SkewSymmetricWrapper<const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, SkewSymmetricVectorType>> |
| InitializeReturnType; |
| |
| /** Initializes a skew symmetric matrix with coefficients set to zero */ |
| EIGEN_DEVICE_FUNC static InitializeReturnType Zero() { return SkewSymmetricVectorType::Zero().asSkewSymmetric(); } |
| |
| /** Sets all coefficients to zero. */ |
| EIGEN_DEVICE_FUNC inline void setZero() { m_vector.setZero(); } |
| }; |
| |
| /** \class SkewSymmetricWrapper |
| * \ingroup Core_Module |
| * |
| * \brief Expression of a skew symmetric matrix |
| * |
| * \tparam SkewSymmetricVectorType_ the type of the vector of coefficients |
| * |
| * This class is an expression of a skew symmetric matrix, but not storing its own vector of coefficients, |
| * instead wrapping an existing vector expression. It is the return type of MatrixBase::asSkewSymmetric() |
| * and most of the time this is the only way that it is used. |
| * |
| * \sa class SkewSymmetricMatrix3, class SkewSymmetricBase, MatrixBase::asSkewSymmetric() |
| */ |
| |
| namespace internal { |
| template <typename SkewSymmetricVectorType_> |
| struct traits<SkewSymmetricWrapper<SkewSymmetricVectorType_>> { |
| typedef SkewSymmetricVectorType_ SkewSymmetricVectorType; |
| typedef typename SkewSymmetricVectorType::Scalar Scalar; |
| typedef typename SkewSymmetricVectorType::StorageIndex StorageIndex; |
| typedef SkewSymmetricShape StorageKind; |
| typedef typename traits<SkewSymmetricVectorType>::XprKind XprKind; |
| enum { |
| RowsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime, |
| ColsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime, |
| MaxRowsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime, |
| MaxColsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime, |
| Flags = (traits<SkewSymmetricVectorType>::Flags & LvalueBit) | NoPreferredStorageOrderBit |
| }; |
| }; |
| } // namespace internal |
| |
| template <typename SkewSymmetricVectorType_> |
| class SkewSymmetricWrapper : public SkewSymmetricBase<SkewSymmetricWrapper<SkewSymmetricVectorType_>>, |
| internal::no_assignment_operator { |
| public: |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| typedef SkewSymmetricVectorType_ SkewSymmetricVectorType; |
| typedef SkewSymmetricWrapper Nested; |
| #endif |
| |
| /** Constructor from expression of coefficients to wrap. */ |
| EIGEN_DEVICE_FUNC explicit inline SkewSymmetricWrapper(SkewSymmetricVectorType& a_vector) : m_vector(a_vector) {} |
| |
| /** \returns a const reference to the wrapped expression of coefficients. */ |
| EIGEN_DEVICE_FUNC const SkewSymmetricVectorType& vector() const { return m_vector; } |
| |
| protected: |
| typename SkewSymmetricVectorType::Nested m_vector; |
| }; |
| |
| /** \returns a pseudo-expression of a skew symmetric matrix with *this as vector of coefficients |
| * |
| * \only_for_vectors |
| * |
| * \sa class SkewSymmetricWrapper, class SkewSymmetricMatrix3, vector(), isSkewSymmetric() |
| **/ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline const SkewSymmetricWrapper<const Derived> MatrixBase<Derived>::asSkewSymmetric() const { |
| return SkewSymmetricWrapper<const Derived>(derived()); |
| } |
| |
| /** \returns true if *this is approximately equal to a skew symmetric matrix, |
| * within the precision given by \a prec. |
| */ |
| template <typename Derived> |
| bool MatrixBase<Derived>::isSkewSymmetric(const RealScalar& prec) const { |
| if (cols() != rows()) return false; |
| return (this->transpose() + *this).isZero(prec); |
| } |
| |
| /** \returns the matrix product of \c *this by the skew symmetric matrix \skew. |
| */ |
| template <typename Derived> |
| template <typename SkewDerived> |
| EIGEN_DEVICE_FUNC inline const Product<Derived, SkewDerived, LazyProduct> MatrixBase<Derived>::operator*( |
| const SkewSymmetricBase<SkewDerived>& skew) const { |
| return Product<Derived, SkewDerived, LazyProduct>(derived(), skew.derived()); |
| } |
| |
| namespace internal { |
| |
| template <> |
| struct storage_kind_to_shape<SkewSymmetricShape> { |
| typedef SkewSymmetricShape Shape; |
| }; |
| |
| struct SkewSymmetric2Dense {}; |
| |
| template <> |
| struct AssignmentKind<DenseShape, SkewSymmetricShape> { |
| typedef SkewSymmetric2Dense Kind; |
| }; |
| |
| // SkewSymmetric matrix to Dense assignment |
| template <typename DstXprType, typename SrcXprType, typename Functor> |
| struct Assignment<DstXprType, SrcXprType, Functor, SkewSymmetric2Dense> { |
| EIGEN_DEVICE_FUNC static void run( |
| DstXprType& dst, const SrcXprType& src, |
| const internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /*func*/) { |
| if ((dst.rows() != 3) || (dst.cols() != 3)) { |
| dst.resize(3, 3); |
| } |
| dst.diagonal().setZero(); |
| const typename SrcXprType::SkewSymmetricVectorType v = src.vector(); |
| dst(0, 1) = -v(2); |
| dst(1, 0) = v(2); |
| dst(0, 2) = v(1); |
| dst(2, 0) = -v(1); |
| dst(1, 2) = -v(0); |
| dst(2, 1) = v(0); |
| } |
| EIGEN_DEVICE_FUNC static void run( |
| DstXprType& dst, const SrcXprType& src, |
| const internal::add_assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /*func*/) { |
| dst.vector() += src.vector(); |
| } |
| |
| EIGEN_DEVICE_FUNC static void run( |
| DstXprType& dst, const SrcXprType& src, |
| const internal::sub_assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /*func*/) { |
| dst.vector() -= src.vector(); |
| } |
| }; |
| |
| } // namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SKEWSYMMETRICMATRIX3_H |