| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_ANGLEAXIS_H |
| #define EIGEN_ANGLEAXIS_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class AngleAxis |
| * |
| * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis |
| * |
| * \param Scalar_ the scalar type, i.e., the type of the coefficients. |
| * |
| * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized. |
| * |
| * The following two typedefs are provided for convenience: |
| * \li \c AngleAxisf for \c float |
| * \li \c AngleAxisd for \c double |
| * |
| * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily |
| * mimic Euler-angles. Here is an example: |
| * \include AngleAxis_mimic_euler.cpp |
| * Output: \verbinclude AngleAxis_mimic_euler.out |
| * |
| * \note This class is not aimed to be used to store a rotation transformation, |
| * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) |
| * and transformation objects. |
| * |
| * \sa class Quaternion, class Transform, MatrixBase::UnitX() |
| */ |
| |
| namespace internal { |
| template <typename Scalar_> |
| struct traits<AngleAxis<Scalar_> > { |
| typedef Scalar_ Scalar; |
| }; |
| } // namespace internal |
| |
| template <typename Scalar_> |
| class AngleAxis : public RotationBase<AngleAxis<Scalar_>, 3> { |
| typedef RotationBase<AngleAxis<Scalar_>, 3> Base; |
| |
| public: |
| using Base::operator*; |
| |
| enum { Dim = 3 }; |
| /** the scalar type of the coefficients */ |
| typedef Scalar_ Scalar; |
| typedef Matrix<Scalar, 3, 3> Matrix3; |
| typedef Matrix<Scalar, 3, 1> Vector3; |
| typedef Quaternion<Scalar> QuaternionType; |
| |
| protected: |
| Vector3 m_axis; |
| Scalar m_angle; |
| |
| public: |
| /** Default constructor without initialization. */ |
| EIGEN_DEVICE_FUNC AngleAxis() {} |
| /** Constructs and initialize the angle-axis rotation from an \a angle in radian |
| * and an \a axis which \b must \b be \b normalized. |
| * |
| * \warning If the \a axis vector is not normalized, then the angle-axis object |
| * represents an invalid rotation. */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) |
| : m_axis(axis), m_angle(angle) {} |
| /** Constructs and initialize the angle-axis rotation from a quaternion \a q. |
| * This function implicitly normalizes the quaternion \a q. |
| */ |
| template <typename QuatDerived> |
| EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { |
| *this = q; |
| } |
| /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase<Derived>& m) { |
| *this = m; |
| } |
| |
| /** \returns the value of the rotation angle in radian */ |
| EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; } |
| /** \returns a read-write reference to the stored angle in radian */ |
| EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; } |
| |
| /** \returns the rotation axis */ |
| EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; } |
| /** \returns a read-write reference to the stored rotation axis. |
| * |
| * \warning The rotation axis must remain a \b unit vector. |
| */ |
| EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; } |
| |
| /** Concatenates two rotations */ |
| EIGEN_DEVICE_FUNC inline QuaternionType operator*(const AngleAxis& other) const { |
| return QuaternionType(*this) * QuaternionType(other); |
| } |
| |
| /** Concatenates two rotations */ |
| EIGEN_DEVICE_FUNC inline QuaternionType operator*(const QuaternionType& other) const { |
| return QuaternionType(*this) * other; |
| } |
| |
| /** Concatenates two rotations */ |
| friend EIGEN_DEVICE_FUNC inline QuaternionType operator*(const QuaternionType& a, const AngleAxis& b) { |
| return a * QuaternionType(b); |
| } |
| |
| /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ |
| EIGEN_DEVICE_FUNC AngleAxis inverse() const { return AngleAxis(-m_angle, m_axis); } |
| |
| template <class QuatDerived> |
| EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase<QuatDerived>& q); |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase<Derived>& m); |
| |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); |
| EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const; |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template <typename NewScalarType> |
| EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AngleAxis, AngleAxis<NewScalarType> >::type cast() |
| const { |
| return typename internal::cast_return_type<AngleAxis, AngleAxis<NewScalarType> >::type(*this); |
| } |
| |
| /** Copy constructor with scalar type conversion */ |
| template <typename OtherScalarType> |
| EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) { |
| m_axis = other.axis().template cast<Scalar>(); |
| m_angle = Scalar(other.angle()); |
| } |
| |
| EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = |
| NumTraits<Scalar>::dummy_precision()) const { |
| return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle, other.m_angle, prec); |
| } |
| }; |
| |
| /** \ingroup Geometry_Module |
| * single precision angle-axis type */ |
| typedef AngleAxis<float> AngleAxisf; |
| /** \ingroup Geometry_Module |
| * double precision angle-axis type */ |
| typedef AngleAxis<double> AngleAxisd; |
| |
| /** Set \c *this from a \b unit quaternion. |
| * |
| * The resulting axis is normalized, and the computed angle is in the [0,pi] range. |
| * |
| * This function implicitly normalizes the quaternion \a q. |
| */ |
| template <typename Scalar> |
| template <typename QuatDerived> |
| EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q) { |
| EIGEN_USING_STD(atan2) |
| EIGEN_USING_STD(abs) |
| Scalar n = q.vec().norm(); |
| if (n < NumTraits<Scalar>::epsilon()) n = q.vec().stableNorm(); |
| |
| if (n != Scalar(0)) { |
| m_angle = Scalar(2) * atan2(n, abs(q.w())); |
| if (q.w() < Scalar(0)) n = -n; |
| m_axis = q.vec() / n; |
| } else { |
| m_angle = Scalar(0); |
| m_axis << Scalar(1), Scalar(0), Scalar(0); |
| } |
| return *this; |
| } |
| |
| /** Set \c *this from a 3x3 rotation matrix \a mat. |
| */ |
| template <typename Scalar> |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) { |
| // Since a direct conversion would not be really faster, |
| // let's use the robust Quaternion implementation: |
| return *this = QuaternionType(mat); |
| } |
| |
| /** |
| * \brief Sets \c *this from a 3x3 rotation matrix. |
| **/ |
| template <typename Scalar> |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) { |
| return *this = QuaternionType(mat); |
| } |
| |
| /** Constructs and \returns an equivalent 3x3 rotation matrix. |
| */ |
| template <typename Scalar> |
| typename AngleAxis<Scalar>::Matrix3 EIGEN_DEVICE_FUNC AngleAxis<Scalar>::toRotationMatrix(void) const { |
| EIGEN_USING_STD(sin) |
| EIGEN_USING_STD(cos) |
| Matrix3 res; |
| Vector3 sin_axis = sin(m_angle) * m_axis; |
| Scalar c = cos(m_angle); |
| Vector3 cos1_axis = (Scalar(1) - c) * m_axis; |
| |
| Scalar tmp; |
| tmp = cos1_axis.x() * m_axis.y(); |
| res.coeffRef(0, 1) = tmp - sin_axis.z(); |
| res.coeffRef(1, 0) = tmp + sin_axis.z(); |
| |
| tmp = cos1_axis.x() * m_axis.z(); |
| res.coeffRef(0, 2) = tmp + sin_axis.y(); |
| res.coeffRef(2, 0) = tmp - sin_axis.y(); |
| |
| tmp = cos1_axis.y() * m_axis.z(); |
| res.coeffRef(1, 2) = tmp - sin_axis.x(); |
| res.coeffRef(2, 1) = tmp + sin_axis.x(); |
| |
| res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; |
| |
| return res; |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_ANGLEAXIS_H |