| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_ROTATION2D_H |
| #define EIGEN_ROTATION2D_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class Rotation2D |
| * |
| * \brief Represents a rotation/orientation in a 2 dimensional space. |
| * |
| * \tparam Scalar_ the scalar type, i.e., the type of the coefficients |
| * |
| * This class is equivalent to a single scalar representing a counter clock wise rotation |
| * as a single angle in radian. It provides some additional features such as the automatic |
| * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar |
| * interface to Quaternion in order to facilitate the writing of generic algorithms |
| * dealing with rotations. |
| * |
| * \sa class Quaternion, class Transform |
| */ |
| |
| namespace internal { |
| |
| template <typename Scalar_> |
| struct traits<Rotation2D<Scalar_> > { |
| typedef Scalar_ Scalar; |
| }; |
| } // end namespace internal |
| |
| template <typename Scalar_> |
| class Rotation2D : public RotationBase<Rotation2D<Scalar_>, 2> { |
| typedef RotationBase<Rotation2D<Scalar_>, 2> Base; |
| |
| public: |
| using Base::operator*; |
| |
| enum { Dim = 2 }; |
| /** the scalar type of the coefficients */ |
| typedef Scalar_ Scalar; |
| typedef Matrix<Scalar, 2, 1> Vector2; |
| typedef Matrix<Scalar, 2, 2> Matrix2; |
| |
| protected: |
| Scalar m_angle; |
| |
| public: |
| /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ |
| EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {} |
| |
| /** Default constructor without initialization. The represented rotation is undefined. */ |
| EIGEN_DEVICE_FUNC Rotation2D() {} |
| |
| /** Construct a 2D rotation from a 2x2 rotation matrix \a mat. |
| * |
| * \sa fromRotationMatrix() |
| */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m) { |
| fromRotationMatrix(m.derived()); |
| } |
| |
| /** \returns the rotation angle */ |
| EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; } |
| |
| /** \returns a read-write reference to the rotation angle */ |
| EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; } |
| |
| /** \returns the rotation angle in [0,2pi] */ |
| EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const { |
| Scalar tmp = numext::fmod(m_angle, Scalar(2 * EIGEN_PI)); |
| return tmp < Scalar(0) ? tmp + Scalar(2 * EIGEN_PI) : tmp; |
| } |
| |
| /** \returns the rotation angle in [-pi,pi] */ |
| EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const { |
| Scalar tmp = numext::fmod(m_angle, Scalar(2 * EIGEN_PI)); |
| if (tmp > Scalar(EIGEN_PI)) |
| tmp -= Scalar(2 * EIGEN_PI); |
| else if (tmp < -Scalar(EIGEN_PI)) |
| tmp += Scalar(2 * EIGEN_PI); |
| return tmp; |
| } |
| |
| /** \returns the inverse rotation */ |
| EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); } |
| |
| /** Concatenates two rotations */ |
| EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const { |
| return Rotation2D(m_angle + other.m_angle); |
| } |
| |
| /** Concatenates two rotations */ |
| EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other) { |
| m_angle += other.m_angle; |
| return *this; |
| } |
| |
| /** Applies the rotation to a 2D vector */ |
| EIGEN_DEVICE_FUNC Vector2 operator*(const Vector2& vec) const { return toRotationMatrix() * vec; } |
| |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m); |
| EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const; |
| |
| /** Set \c *this from a 2x2 rotation matrix \a mat. |
| * In other words, this function extract the rotation angle from the rotation matrix. |
| * |
| * This method is an alias for fromRotationMatrix() |
| * |
| * \sa fromRotationMatrix() |
| */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase<Derived>& m) { |
| return fromRotationMatrix(m.derived()); |
| } |
| |
| /** \returns the spherical interpolation between \c *this and \a other using |
| * parameter \a t. It is in fact equivalent to a linear interpolation. |
| */ |
| EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const { |
| Scalar dist = Rotation2D(other.m_angle - m_angle).smallestAngle(); |
| return Rotation2D(m_angle + dist * t); |
| } |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template <typename NewScalarType> |
| EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D, Rotation2D<NewScalarType> >::type cast() |
| const { |
| return typename internal::cast_return_type<Rotation2D, Rotation2D<NewScalarType> >::type(*this); |
| } |
| |
| /** Copy constructor with scalar type conversion */ |
| template <typename OtherScalarType> |
| EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other) { |
| m_angle = Scalar(other.angle()); |
| } |
| |
| EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = |
| NumTraits<Scalar>::dummy_precision()) const { |
| return internal::isApprox(m_angle, other.m_angle, prec); |
| } |
| }; |
| |
| /** \ingroup Geometry_Module |
| * single precision 2D rotation type */ |
| typedef Rotation2D<float> Rotation2Df; |
| /** \ingroup Geometry_Module |
| * double precision 2D rotation type */ |
| typedef Rotation2D<double> Rotation2Dd; |
| |
| /** Set \c *this from a 2x2 rotation matrix \a mat. |
| * In other words, this function extract the rotation angle |
| * from the rotation matrix. |
| */ |
| template <typename Scalar> |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) { |
| EIGEN_USING_STD(atan2) |
| EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime == 2 && Derived::ColsAtCompileTime == 2, |
| YOU_MADE_A_PROGRAMMING_MISTAKE) |
| m_angle = atan2(mat.coeff(1, 0), mat.coeff(0, 0)); |
| return *this; |
| } |
| |
| /** Constructs and \returns an equivalent 2x2 rotation matrix. |
| */ |
| template <typename Scalar> |
| typename Rotation2D<Scalar>::Matrix2 EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const { |
| EIGEN_USING_STD(sin) |
| EIGEN_USING_STD(cos) |
| Scalar sinA = sin(m_angle); |
| Scalar cosA = cos(m_angle); |
| return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_ROTATION2D_H |