blob: 682c4c70da9430b9ccffa674c822ce14968a599d [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TRANSLATION_H
#define EIGEN_TRANSLATION_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Translation
*
* \brief Represents a translation transformation
*
* \tparam Scalar_ the scalar type, i.e., the type of the coefficients.
* \tparam Dim_ the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a translation transformation,
* but rather to make easier the constructions and updates of Transform objects.
*
* \sa class Scaling, class Transform
*/
template <typename Scalar_, int Dim_>
class Translation {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_, Dim_)
/** dimension of the space */
enum { Dim = Dim_ };
/** the scalar type of the coefficients */
typedef Scalar_ Scalar;
/** corresponding vector type */
typedef Matrix<Scalar, Dim, 1> VectorType;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar, Dim, Dim> LinearMatrixType;
/** corresponding affine transformation type */
typedef Transform<Scalar, Dim, Affine> AffineTransformType;
/** corresponding isometric transformation type */
typedef Transform<Scalar, Dim, Isometry> IsometryTransformType;
protected:
VectorType m_coeffs;
public:
/** Default constructor without initialization. */
EIGEN_DEVICE_FUNC Translation() {}
/** */
EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy) {
eigen_assert(Dim == 2);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
}
/** */
EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz) {
eigen_assert(Dim == 3);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
m_coeffs.z() = sz;
}
/** Constructs and initialize the translation transformation from a vector of translation coefficients */
EIGEN_DEVICE_FUNC explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
/** \brief Returns the x-translation by value. **/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar x() const { return m_coeffs.x(); }
/** \brief Returns the y-translation by value. **/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar y() const { return m_coeffs.y(); }
/** \brief Returns the z-translation by value. **/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar z() const { return m_coeffs.z(); }
/** \brief Returns the x-translation as a reference. **/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar& x() { return m_coeffs.x(); }
/** \brief Returns the y-translation as a reference. **/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar& y() { return m_coeffs.y(); }
/** \brief Returns the z-translation as a reference. **/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar& z() { return m_coeffs.z(); }
EIGEN_DEVICE_FUNC const VectorType& vector() const { return m_coeffs; }
EIGEN_DEVICE_FUNC VectorType& vector() { return m_coeffs; }
EIGEN_DEVICE_FUNC const VectorType& translation() const { return m_coeffs; }
EIGEN_DEVICE_FUNC VectorType& translation() { return m_coeffs; }
/** Concatenates two translation */
EIGEN_DEVICE_FUNC inline Translation operator*(const Translation& other) const {
return Translation(m_coeffs + other.m_coeffs);
}
/** Concatenates a translation and a uniform scaling */
EIGEN_DEVICE_FUNC inline AffineTransformType operator*(const UniformScaling<Scalar>& other) const;
/** Concatenates a translation and a linear transformation */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear) const;
/** Concatenates a translation and a rotation */
template <typename Derived>
EIGEN_DEVICE_FUNC inline IsometryTransformType operator*(const RotationBase<Derived, Dim>& r) const {
return *this * IsometryTransformType(r);
}
/** \returns the concatenation of a linear transformation \a l with the translation \a t */
// its a nightmare to define a templated friend function outside its declaration
template <typename OtherDerived>
friend EIGEN_DEVICE_FUNC inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear,
const Translation& t) {
AffineTransformType res;
res.matrix().setZero();
res.linear() = linear.derived();
res.translation() = linear.derived() * t.m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim, Dim) = Scalar(1);
return res;
}
/** Concatenates a translation and a transformation */
template <int Mode, int Options>
EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode> operator*(
const Transform<Scalar, Dim, Mode, Options>& t) const {
Transform<Scalar, Dim, Mode> res = t;
res.pretranslate(m_coeffs);
return res;
}
/** Applies translation to vector */
template <typename Derived>
inline std::enable_if_t<Derived::IsVectorAtCompileTime, VectorType> operator*(const MatrixBase<Derived>& vec) const {
return m_coeffs + vec.derived();
}
/** \returns the inverse translation (opposite) */
Translation inverse() const { return Translation(-m_coeffs); }
static const Translation Identity() { return Translation(VectorType::Zero()); }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template <typename NewScalarType>
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Translation, Translation<NewScalarType, Dim> >::type
cast() const {
return typename internal::cast_return_type<Translation, Translation<NewScalarType, Dim> >::type(*this);
}
/** Copy constructor with scalar type conversion */
template <typename OtherScalarType>
EIGEN_DEVICE_FUNC inline explicit Translation(const Translation<OtherScalarType, Dim>& other) {
m_coeffs = other.vector().template cast<Scalar>();
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
EIGEN_DEVICE_FUNC bool isApprox(const Translation& other, const typename NumTraits<Scalar>::Real& prec =
NumTraits<Scalar>::dummy_precision()) const {
return m_coeffs.isApprox(other.m_coeffs, prec);
}
};
/** \addtogroup Geometry_Module */
//@{
typedef Translation<float, 2> Translation2f;
typedef Translation<double, 2> Translation2d;
typedef Translation<float, 3> Translation3f;
typedef Translation<double, 3> Translation3d;
//@}
template <typename Scalar, int Dim>
EIGEN_DEVICE_FUNC inline typename Translation<Scalar, Dim>::AffineTransformType Translation<Scalar, Dim>::operator*(
const UniformScaling<Scalar>& other) const {
AffineTransformType res;
res.matrix().setZero();
res.linear().diagonal().fill(other.factor());
res.translation() = m_coeffs;
res(Dim, Dim) = Scalar(1);
return res;
}
template <typename Scalar, int Dim>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC inline typename Translation<Scalar, Dim>::AffineTransformType Translation<Scalar, Dim>::operator*(
const EigenBase<OtherDerived>& linear) const {
AffineTransformType res;
res.matrix().setZero();
res.linear() = linear.derived();
res.translation() = m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim, Dim) = Scalar(1);
return res;
}
} // end namespace Eigen
#endif // EIGEN_TRANSLATION_H