| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_TRANSLATION_H |
| #define EIGEN_TRANSLATION_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class Translation |
| * |
| * \brief Represents a translation transformation |
| * |
| * \tparam Scalar_ the scalar type, i.e., the type of the coefficients. |
| * \tparam Dim_ the dimension of the space, can be a compile time value or Dynamic |
| * |
| * \note This class is not aimed to be used to store a translation transformation, |
| * but rather to make easier the constructions and updates of Transform objects. |
| * |
| * \sa class Scaling, class Transform |
| */ |
| template <typename Scalar_, int Dim_> |
| class Translation { |
| public: |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_, Dim_) |
| /** dimension of the space */ |
| enum { Dim = Dim_ }; |
| /** the scalar type of the coefficients */ |
| typedef Scalar_ Scalar; |
| /** corresponding vector type */ |
| typedef Matrix<Scalar, Dim, 1> VectorType; |
| /** corresponding linear transformation matrix type */ |
| typedef Matrix<Scalar, Dim, Dim> LinearMatrixType; |
| /** corresponding affine transformation type */ |
| typedef Transform<Scalar, Dim, Affine> AffineTransformType; |
| /** corresponding isometric transformation type */ |
| typedef Transform<Scalar, Dim, Isometry> IsometryTransformType; |
| |
| protected: |
| VectorType m_coeffs; |
| |
| public: |
| /** Default constructor without initialization. */ |
| EIGEN_DEVICE_FUNC Translation() {} |
| /** */ |
| EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy) { |
| eigen_assert(Dim == 2); |
| m_coeffs.x() = sx; |
| m_coeffs.y() = sy; |
| } |
| /** */ |
| EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz) { |
| eigen_assert(Dim == 3); |
| m_coeffs.x() = sx; |
| m_coeffs.y() = sy; |
| m_coeffs.z() = sz; |
| } |
| /** Constructs and initialize the translation transformation from a vector of translation coefficients */ |
| EIGEN_DEVICE_FUNC explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {} |
| |
| /** \brief Returns the x-translation by value. **/ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar x() const { return m_coeffs.x(); } |
| /** \brief Returns the y-translation by value. **/ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar y() const { return m_coeffs.y(); } |
| /** \brief Returns the z-translation by value. **/ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar z() const { return m_coeffs.z(); } |
| |
| /** \brief Returns the x-translation as a reference. **/ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar& x() { return m_coeffs.x(); } |
| /** \brief Returns the y-translation as a reference. **/ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar& y() { return m_coeffs.y(); } |
| /** \brief Returns the z-translation as a reference. **/ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Scalar& z() { return m_coeffs.z(); } |
| |
| EIGEN_DEVICE_FUNC const VectorType& vector() const { return m_coeffs; } |
| EIGEN_DEVICE_FUNC VectorType& vector() { return m_coeffs; } |
| |
| EIGEN_DEVICE_FUNC const VectorType& translation() const { return m_coeffs; } |
| EIGEN_DEVICE_FUNC VectorType& translation() { return m_coeffs; } |
| |
| /** Concatenates two translation */ |
| EIGEN_DEVICE_FUNC inline Translation operator*(const Translation& other) const { |
| return Translation(m_coeffs + other.m_coeffs); |
| } |
| |
| /** Concatenates a translation and a uniform scaling */ |
| EIGEN_DEVICE_FUNC inline AffineTransformType operator*(const UniformScaling<Scalar>& other) const; |
| |
| /** Concatenates a translation and a linear transformation */ |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear) const; |
| |
| /** Concatenates a translation and a rotation */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline IsometryTransformType operator*(const RotationBase<Derived, Dim>& r) const { |
| return *this * IsometryTransformType(r); |
| } |
| |
| /** \returns the concatenation of a linear transformation \a l with the translation \a t */ |
| // its a nightmare to define a templated friend function outside its declaration |
| template <typename OtherDerived> |
| friend EIGEN_DEVICE_FUNC inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear, |
| const Translation& t) { |
| AffineTransformType res; |
| res.matrix().setZero(); |
| res.linear() = linear.derived(); |
| res.translation() = linear.derived() * t.m_coeffs; |
| res.matrix().row(Dim).setZero(); |
| res(Dim, Dim) = Scalar(1); |
| return res; |
| } |
| |
| /** Concatenates a translation and a transformation */ |
| template <int Mode, int Options> |
| EIGEN_DEVICE_FUNC inline Transform<Scalar, Dim, Mode> operator*( |
| const Transform<Scalar, Dim, Mode, Options>& t) const { |
| Transform<Scalar, Dim, Mode> res = t; |
| res.pretranslate(m_coeffs); |
| return res; |
| } |
| |
| /** Applies translation to vector */ |
| template <typename Derived> |
| inline std::enable_if_t<Derived::IsVectorAtCompileTime, VectorType> operator*(const MatrixBase<Derived>& vec) const { |
| return m_coeffs + vec.derived(); |
| } |
| |
| /** \returns the inverse translation (opposite) */ |
| Translation inverse() const { return Translation(-m_coeffs); } |
| |
| static const Translation Identity() { return Translation(VectorType::Zero()); } |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template <typename NewScalarType> |
| EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Translation, Translation<NewScalarType, Dim> >::type |
| cast() const { |
| return typename internal::cast_return_type<Translation, Translation<NewScalarType, Dim> >::type(*this); |
| } |
| |
| /** Copy constructor with scalar type conversion */ |
| template <typename OtherScalarType> |
| EIGEN_DEVICE_FUNC inline explicit Translation(const Translation<OtherScalarType, Dim>& other) { |
| m_coeffs = other.vector().template cast<Scalar>(); |
| } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| EIGEN_DEVICE_FUNC bool isApprox(const Translation& other, const typename NumTraits<Scalar>::Real& prec = |
| NumTraits<Scalar>::dummy_precision()) const { |
| return m_coeffs.isApprox(other.m_coeffs, prec); |
| } |
| }; |
| |
| /** \addtogroup Geometry_Module */ |
| //@{ |
| typedef Translation<float, 2> Translation2f; |
| typedef Translation<double, 2> Translation2d; |
| typedef Translation<float, 3> Translation3f; |
| typedef Translation<double, 3> Translation3d; |
| //@} |
| |
| template <typename Scalar, int Dim> |
| EIGEN_DEVICE_FUNC inline typename Translation<Scalar, Dim>::AffineTransformType Translation<Scalar, Dim>::operator*( |
| const UniformScaling<Scalar>& other) const { |
| AffineTransformType res; |
| res.matrix().setZero(); |
| res.linear().diagonal().fill(other.factor()); |
| res.translation() = m_coeffs; |
| res(Dim, Dim) = Scalar(1); |
| return res; |
| } |
| |
| template <typename Scalar, int Dim> |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline typename Translation<Scalar, Dim>::AffineTransformType Translation<Scalar, Dim>::operator*( |
| const EigenBase<OtherDerived>& linear) const { |
| AffineTransformType res; |
| res.matrix().setZero(); |
| res.linear() = linear.derived(); |
| res.translation() = m_coeffs; |
| res.matrix().row(Dim).setZero(); |
| res(Dim, Dim) = Scalar(1); |
| return res; |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_TRANSLATION_H |