| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| /* |
| NOTE: this routine has been adapted from the CSparse library: |
| |
| Copyright (c) 2006, Timothy A. Davis. |
| http://www.suitesparse.com |
| |
| The author of CSparse, Timothy A. Davis., has executed a license with Google LLC |
| to permit distribution of this code and derivative works as part of Eigen under |
| the Mozilla Public License v. 2.0, as stated at the top of this file. |
| */ |
| |
| #ifndef EIGEN_SPARSE_AMD_H |
| #define EIGEN_SPARSE_AMD_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <typename T> |
| inline T amd_flip(const T& i) { |
| return -i - 2; |
| } |
| template <typename T> |
| inline T amd_unflip(const T& i) { |
| return i < 0 ? amd_flip(i) : i; |
| } |
| template <typename T0, typename T1> |
| inline bool amd_marked(const T0* w, const T1& j) { |
| return w[j] < 0; |
| } |
| template <typename T0, typename T1> |
| inline void amd_mark(const T0* w, const T1& j) { |
| return w[j] = amd_flip(w[j]); |
| } |
| |
| /* clear w */ |
| template <typename StorageIndex> |
| static StorageIndex cs_wclear(StorageIndex mark, StorageIndex lemax, StorageIndex* w, StorageIndex n) { |
| StorageIndex k; |
| if (mark < 2 || (mark + lemax < 0)) { |
| for (k = 0; k < n; k++) |
| if (w[k] != 0) w[k] = 1; |
| mark = 2; |
| } |
| return (mark); /* at this point, w[0..n-1] < mark holds */ |
| } |
| |
| /* depth-first search and postorder of a tree rooted at node j */ |
| template <typename StorageIndex> |
| StorageIndex cs_tdfs(StorageIndex j, StorageIndex k, StorageIndex* head, const StorageIndex* next, StorageIndex* post, |
| StorageIndex* stack) { |
| StorageIndex i, p, top = 0; |
| if (!head || !next || !post || !stack) return (-1); /* check inputs */ |
| stack[0] = j; /* place j on the stack */ |
| while (top >= 0) /* while (stack is not empty) */ |
| { |
| p = stack[top]; /* p = top of stack */ |
| i = head[p]; /* i = youngest child of p */ |
| if (i == -1) { |
| top--; /* p has no unordered children left */ |
| post[k++] = p; /* node p is the kth postordered node */ |
| } else { |
| head[p] = next[i]; /* remove i from children of p */ |
| stack[++top] = i; /* start dfs on child node i */ |
| } |
| } |
| return k; |
| } |
| |
| /** \internal |
| * \ingroup OrderingMethods_Module |
| * Approximate minimum degree ordering algorithm. |
| * |
| * \param[in] C the input selfadjoint matrix stored in compressed column major format. |
| * \param[out] perm the permutation P reducing the fill-in of the input matrix \a C |
| * |
| * Note that the input matrix \a C must be complete, that is both the upper and lower parts have to be stored, as well |
| * as the diagonal entries. On exit the values of C are destroyed */ |
| template <typename Scalar, typename StorageIndex> |
| void minimum_degree_ordering(SparseMatrix<Scalar, ColMajor, StorageIndex>& C, |
| PermutationMatrix<Dynamic, Dynamic, StorageIndex>& perm) { |
| using std::sqrt; |
| |
| StorageIndex d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1, k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, |
| nvj, nvk, mark, wnvi, ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t, h; |
| |
| StorageIndex n = StorageIndex(C.cols()); |
| dense = std::max<StorageIndex>(16, StorageIndex(10 * sqrt(double(n)))); /* find dense threshold */ |
| dense = (std::min)(n - 2, dense); |
| |
| StorageIndex cnz = StorageIndex(C.nonZeros()); |
| perm.resize(n + 1); |
| t = cnz + cnz / 5 + 2 * n; /* add elbow room to C */ |
| C.resizeNonZeros(t); |
| |
| // get workspace |
| ei_declare_aligned_stack_constructed_variable(StorageIndex, W, 8 * (n + 1), 0); |
| StorageIndex* len = W; |
| StorageIndex* nv = W + (n + 1); |
| StorageIndex* next = W + 2 * (n + 1); |
| StorageIndex* head = W + 3 * (n + 1); |
| StorageIndex* elen = W + 4 * (n + 1); |
| StorageIndex* degree = W + 5 * (n + 1); |
| StorageIndex* w = W + 6 * (n + 1); |
| StorageIndex* hhead = W + 7 * (n + 1); |
| StorageIndex* last = perm.indices().data(); /* use P as workspace for last */ |
| |
| /* --- Initialize quotient graph ---------------------------------------- */ |
| StorageIndex* Cp = C.outerIndexPtr(); |
| StorageIndex* Ci = C.innerIndexPtr(); |
| for (k = 0; k < n; k++) len[k] = Cp[k + 1] - Cp[k]; |
| len[n] = 0; |
| nzmax = t; |
| |
| for (i = 0; i <= n; i++) { |
| head[i] = -1; // degree list i is empty |
| last[i] = -1; |
| next[i] = -1; |
| hhead[i] = -1; // hash list i is empty |
| nv[i] = 1; // node i is just one node |
| w[i] = 1; // node i is alive |
| elen[i] = 0; // Ek of node i is empty |
| degree[i] = len[i]; // degree of node i |
| } |
| mark = internal::cs_wclear<StorageIndex>(0, 0, w, n); /* clear w */ |
| |
| /* --- Initialize degree lists ------------------------------------------ */ |
| for (i = 0; i < n; i++) { |
| bool has_diag = false; |
| for (p = Cp[i]; p < Cp[i + 1]; ++p) |
| if (Ci[p] == i) { |
| has_diag = true; |
| break; |
| } |
| |
| d = degree[i]; |
| if (d == 1 && has_diag) /* node i is empty */ |
| { |
| elen[i] = -2; /* element i is dead */ |
| nel++; |
| Cp[i] = -1; /* i is a root of assembly tree */ |
| w[i] = 0; |
| } else if (d > dense || !has_diag) /* node i is dense or has no structural diagonal element */ |
| { |
| nv[i] = 0; /* absorb i into element n */ |
| elen[i] = -1; /* node i is dead */ |
| nel++; |
| Cp[i] = amd_flip(n); |
| nv[n]++; |
| } else { |
| if (head[d] != -1) last[head[d]] = i; |
| next[i] = head[d]; /* put node i in degree list d */ |
| head[d] = i; |
| } |
| } |
| |
| elen[n] = -2; /* n is a dead element */ |
| Cp[n] = -1; /* n is a root of assembly tree */ |
| w[n] = 0; /* n is a dead element */ |
| |
| while (nel < n) /* while (selecting pivots) do */ |
| { |
| /* --- Select node of minimum approximate degree -------------------- */ |
| for (k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) { |
| } |
| if (next[k] != -1) last[next[k]] = -1; |
| head[mindeg] = next[k]; /* remove k from degree list */ |
| elenk = elen[k]; /* elenk = |Ek| */ |
| nvk = nv[k]; /* # of nodes k represents */ |
| nel += nvk; /* nv[k] nodes of A eliminated */ |
| |
| /* --- Garbage collection ------------------------------------------- */ |
| if (elenk > 0 && cnz + mindeg >= nzmax) { |
| for (j = 0; j < n; j++) { |
| if ((p = Cp[j]) >= 0) /* j is a live node or element */ |
| { |
| Cp[j] = Ci[p]; /* save first entry of object */ |
| Ci[p] = amd_flip(j); /* first entry is now amd_flip(j) */ |
| } |
| } |
| for (q = 0, p = 0; p < cnz;) /* scan all of memory */ |
| { |
| if ((j = amd_flip(Ci[p++])) >= 0) /* found object j */ |
| { |
| Ci[q] = Cp[j]; /* restore first entry of object */ |
| Cp[j] = q++; /* new pointer to object j */ |
| for (k3 = 0; k3 < len[j] - 1; k3++) Ci[q++] = Ci[p++]; |
| } |
| } |
| cnz = q; /* Ci[cnz...nzmax-1] now free */ |
| } |
| |
| /* --- Construct new element ---------------------------------------- */ |
| dk = 0; |
| nv[k] = -nvk; /* flag k as in Lk */ |
| p = Cp[k]; |
| pk1 = (elenk == 0) ? p : cnz; /* do in place if elen[k] == 0 */ |
| pk2 = pk1; |
| for (k1 = 1; k1 <= elenk + 1; k1++) { |
| if (k1 > elenk) { |
| e = k; /* search the nodes in k */ |
| pj = p; /* list of nodes starts at Ci[pj]*/ |
| ln = len[k] - elenk; /* length of list of nodes in k */ |
| } else { |
| e = Ci[p++]; /* search the nodes in e */ |
| pj = Cp[e]; |
| ln = len[e]; /* length of list of nodes in e */ |
| } |
| for (k2 = 1; k2 <= ln; k2++) { |
| i = Ci[pj++]; |
| if ((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */ |
| dk += nvi; /* degree[Lk] += size of node i */ |
| nv[i] = -nvi; /* negate nv[i] to denote i in Lk*/ |
| Ci[pk2++] = i; /* place i in Lk */ |
| if (next[i] != -1) last[next[i]] = last[i]; |
| if (last[i] != -1) /* remove i from degree list */ |
| { |
| next[last[i]] = next[i]; |
| } else { |
| head[degree[i]] = next[i]; |
| } |
| } |
| if (e != k) { |
| Cp[e] = amd_flip(k); /* absorb e into k */ |
| w[e] = 0; /* e is now a dead element */ |
| } |
| } |
| if (elenk != 0) cnz = pk2; /* Ci[cnz...nzmax] is free */ |
| degree[k] = dk; /* external degree of k - |Lk\i| */ |
| Cp[k] = pk1; /* element k is in Ci[pk1..pk2-1] */ |
| len[k] = pk2 - pk1; |
| elen[k] = -2; /* k is now an element */ |
| |
| /* --- Find set differences ----------------------------------------- */ |
| mark = internal::cs_wclear<StorageIndex>(mark, lemax, w, n); /* clear w if necessary */ |
| for (pk = pk1; pk < pk2; pk++) /* scan 1: find |Le\Lk| */ |
| { |
| i = Ci[pk]; |
| if ((eln = elen[i]) <= 0) continue; /* skip if elen[i] empty */ |
| nvi = -nv[i]; /* nv[i] was negated */ |
| wnvi = mark - nvi; |
| for (p = Cp[i]; p <= Cp[i] + eln - 1; p++) /* scan Ei */ |
| { |
| e = Ci[p]; |
| if (w[e] >= mark) { |
| w[e] -= nvi; /* decrement |Le\Lk| */ |
| } else if (w[e] != 0) /* ensure e is a live element */ |
| { |
| w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */ |
| } |
| } |
| } |
| |
| /* --- Degree update ------------------------------------------------ */ |
| for (pk = pk1; pk < pk2; pk++) /* scan2: degree update */ |
| { |
| i = Ci[pk]; /* consider node i in Lk */ |
| p1 = Cp[i]; |
| p2 = p1 + elen[i] - 1; |
| pn = p1; |
| for (h = 0, d = 0, p = p1; p <= p2; p++) /* scan Ei */ |
| { |
| e = Ci[p]; |
| if (w[e] != 0) /* e is an unabsorbed element */ |
| { |
| dext = w[e] - mark; /* dext = |Le\Lk| */ |
| if (dext > 0) { |
| d += dext; /* sum up the set differences */ |
| Ci[pn++] = e; /* keep e in Ei */ |
| h += e; /* compute the hash of node i */ |
| } else { |
| Cp[e] = amd_flip(k); /* aggressive absorb. e->k */ |
| w[e] = 0; /* e is a dead element */ |
| } |
| } |
| } |
| elen[i] = pn - p1 + 1; /* elen[i] = |Ei| */ |
| p3 = pn; |
| p4 = p1 + len[i]; |
| for (p = p2 + 1; p < p4; p++) /* prune edges in Ai */ |
| { |
| j = Ci[p]; |
| if ((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */ |
| d += nvj; /* degree(i) += |j| */ |
| Ci[pn++] = j; /* place j in node list of i */ |
| h += j; /* compute hash for node i */ |
| } |
| if (d == 0) /* check for mass elimination */ |
| { |
| Cp[i] = amd_flip(k); /* absorb i into k */ |
| nvi = -nv[i]; |
| dk -= nvi; /* |Lk| -= |i| */ |
| nvk += nvi; /* |k| += nv[i] */ |
| nel += nvi; |
| nv[i] = 0; |
| elen[i] = -1; /* node i is dead */ |
| } else { |
| degree[i] = std::min<StorageIndex>(degree[i], d); /* update degree(i) */ |
| Ci[pn] = Ci[p3]; /* move first node to end */ |
| Ci[p3] = Ci[p1]; /* move 1st el. to end of Ei */ |
| Ci[p1] = k; /* add k as 1st element in of Ei */ |
| len[i] = pn - p1 + 1; /* new len of adj. list of node i */ |
| h %= n; /* finalize hash of i */ |
| next[i] = hhead[h]; /* place i in hash bucket */ |
| hhead[h] = i; |
| last[i] = h; /* save hash of i in last[i] */ |
| } |
| } /* scan2 is done */ |
| degree[k] = dk; /* finalize |Lk| */ |
| lemax = std::max<StorageIndex>(lemax, dk); |
| mark = internal::cs_wclear<StorageIndex>(mark + lemax, lemax, w, n); /* clear w */ |
| |
| /* --- Supernode detection ------------------------------------------ */ |
| for (pk = pk1; pk < pk2; pk++) { |
| i = Ci[pk]; |
| if (nv[i] >= 0) continue; /* skip if i is dead */ |
| h = last[i]; /* scan hash bucket of node i */ |
| i = hhead[h]; |
| hhead[h] = -1; /* hash bucket will be empty */ |
| for (; i != -1 && next[i] != -1; i = next[i], mark++) { |
| ln = len[i]; |
| eln = elen[i]; |
| for (p = Cp[i] + 1; p <= Cp[i] + ln - 1; p++) w[Ci[p]] = mark; |
| jlast = i; |
| for (j = next[i]; j != -1;) /* compare i with all j */ |
| { |
| ok = (len[j] == ln) && (elen[j] == eln); |
| for (p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++) { |
| if (w[Ci[p]] != mark) ok = 0; /* compare i and j*/ |
| } |
| if (ok) /* i and j are identical */ |
| { |
| Cp[j] = amd_flip(i); /* absorb j into i */ |
| nv[i] += nv[j]; |
| nv[j] = 0; |
| elen[j] = -1; /* node j is dead */ |
| j = next[j]; /* delete j from hash bucket */ |
| next[jlast] = j; |
| } else { |
| jlast = j; /* j and i are different */ |
| j = next[j]; |
| } |
| } |
| } |
| } |
| |
| /* --- Finalize new element------------------------------------------ */ |
| for (p = pk1, pk = pk1; pk < pk2; pk++) /* finalize Lk */ |
| { |
| i = Ci[pk]; |
| if ((nvi = -nv[i]) <= 0) continue; /* skip if i is dead */ |
| nv[i] = nvi; /* restore nv[i] */ |
| d = degree[i] + dk - nvi; /* compute external degree(i) */ |
| d = std::min<StorageIndex>(d, n - nel - nvi); |
| if (head[d] != -1) last[head[d]] = i; |
| next[i] = head[d]; /* put i back in degree list */ |
| last[i] = -1; |
| head[d] = i; |
| mindeg = std::min<StorageIndex>(mindeg, d); /* find new minimum degree */ |
| degree[i] = d; |
| Ci[p++] = i; /* place i in Lk */ |
| } |
| nv[k] = nvk; /* # nodes absorbed into k */ |
| if ((len[k] = p - pk1) == 0) /* length of adj list of element k*/ |
| { |
| Cp[k] = -1; /* k is a root of the tree */ |
| w[k] = 0; /* k is now a dead element */ |
| } |
| if (elenk != 0) cnz = p; /* free unused space in Lk */ |
| } |
| |
| /* --- Postordering ----------------------------------------------------- */ |
| for (i = 0; i < n; i++) Cp[i] = amd_flip(Cp[i]); /* fix assembly tree */ |
| for (j = 0; j <= n; j++) head[j] = -1; |
| for (j = n; j >= 0; j--) /* place unordered nodes in lists */ |
| { |
| if (nv[j] > 0) continue; /* skip if j is an element */ |
| next[j] = head[Cp[j]]; /* place j in list of its parent */ |
| head[Cp[j]] = j; |
| } |
| for (e = n; e >= 0; e--) /* place elements in lists */ |
| { |
| if (nv[e] <= 0) continue; /* skip unless e is an element */ |
| if (Cp[e] != -1) { |
| next[e] = head[Cp[e]]; /* place e in list of its parent */ |
| head[Cp[e]] = e; |
| } |
| } |
| for (k = 0, i = 0; i <= n; i++) /* postorder the assembly tree */ |
| { |
| if (Cp[i] == -1) k = internal::cs_tdfs<StorageIndex>(i, k, head, next, perm.indices().data(), w); |
| } |
| |
| perm.indices().conservativeResize(n); |
| } |
| |
| } // namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SPARSE_AMD_H |