blob: 22affd2213c2409d5375eb881f5dacb29e52cc9d [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]memory.c files in SuperLU
* -- SuperLU routine (version 3.1) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* August 1, 2008
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef EIGEN_SPARSELU_MEMORY
#define EIGEN_SPARSELU_MEMORY
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
enum { LUNoMarker = 3 };
enum { emptyIdxLU = -1 };
inline Index LUnumTempV(Index& m, Index& w, Index& t, Index& b) { return (std::max)(m, (t + b) * w); }
template <typename Scalar>
inline Index LUTempSpace(Index& m, Index& w) {
return (2 * w + 4 + LUNoMarker) * m * sizeof(Index) + (w + 1) * m * sizeof(Scalar);
}
/**
* Expand the existing storage to accommodate more fill-ins
* \param vec Valid pointer to the vector to allocate or expand
* \param[in,out] length At input, contain the current length of the vector that is to be increased. At output, length
* of the newly allocated vector \param[in] nbElts Current number of elements in the factors \param keep_prev 1: use
* length and do not expand the vector; 0: compute new_len and expand \param[in,out] num_expansions Number of times the
* memory has been expanded
*/
template <typename Scalar, typename StorageIndex>
template <typename VectorType>
Index SparseLUImpl<Scalar, StorageIndex>::expand(VectorType& vec, Index& length, Index nbElts, Index keep_prev,
Index& num_expansions) {
float alpha = 1.5; // Ratio of the memory increase
Index new_len; // New size of the allocated memory
if (num_expansions == 0 || keep_prev)
new_len = length; // First time allocate requested
else
new_len = (std::max)(length + 1, Index(alpha * length));
VectorType old_vec; // Temporary vector to hold the previous values
if (nbElts > 0) old_vec = vec.segment(0, nbElts);
// Allocate or expand the current vector
#ifdef EIGEN_EXCEPTIONS
try
#endif
{
vec.resize(new_len);
}
#ifdef EIGEN_EXCEPTIONS
catch (std::bad_alloc&)
#else
if (!vec.size())
#endif
{
if (!num_expansions) {
// First time to allocate from LUMemInit()
// Let LUMemInit() deals with it.
return -1;
}
if (keep_prev) {
// In this case, the memory length should not not be reduced
return new_len;
} else {
// Reduce the size and increase again
Index tries = 0; // Number of attempts
do {
alpha = (alpha + 1) / 2;
new_len = (std::max)(length + 1, Index(alpha * length));
#ifdef EIGEN_EXCEPTIONS
try
#endif
{
vec.resize(new_len);
}
#ifdef EIGEN_EXCEPTIONS
catch (std::bad_alloc&)
#else
if (!vec.size())
#endif
{
tries += 1;
if (tries > 10) return new_len;
}
} while (!vec.size());
}
}
// Copy the previous values to the newly allocated space
if (nbElts > 0) vec.segment(0, nbElts) = old_vec;
length = new_len;
if (num_expansions) ++num_expansions;
return 0;
}
/**
* \brief Allocate various working space for the numerical factorization phase.
* \param m number of rows of the input matrix
* \param n number of columns
* \param annz number of initial nonzeros in the matrix
* \param lwork if lwork=-1, this routine returns an estimated size of the required memory
* \param glu persistent data to facilitate multiple factors : will be deleted later ??
* \param fillratio estimated ratio of fill in the factors
* \param panel_size Size of a panel
* \return an estimated size of the required memory if lwork = -1; otherwise, return the size of actually allocated
* memory when allocation failed, and 0 on success \note Unlike SuperLU, this routine does not support successive
* factorization with the same pattern and the same row permutation
*/
template <typename Scalar, typename StorageIndex>
Index SparseLUImpl<Scalar, StorageIndex>::memInit(Index m, Index n, Index annz, Index lwork, Index fillratio,
Index panel_size, GlobalLU_t& glu) {
Index& num_expansions = glu.num_expansions; // No memory expansions so far
num_expansions = 0;
glu.nzumax = glu.nzlumax = (std::min)(fillratio * (annz + 1) / n, m) * n; // estimated number of nonzeros in U
glu.nzlmax = (std::max)(Index(4), fillratio) * (annz + 1) / 4; // estimated nnz in L factor
// Return the estimated size to the user if necessary
Index tempSpace;
tempSpace = (2 * panel_size + 4 + LUNoMarker) * m * sizeof(Index) + (panel_size + 1) * m * sizeof(Scalar);
if (lwork == emptyIdxLU) {
Index estimated_size;
estimated_size = (5 * n + 5) * sizeof(Index) + tempSpace + (glu.nzlmax + glu.nzumax) * sizeof(Index) +
(glu.nzlumax + glu.nzumax) * sizeof(Scalar) + n;
return estimated_size;
}
// Setup the required space
// First allocate Integer pointers for L\U factors
glu.xsup.resize(n + 1);
glu.supno.resize(n + 1);
glu.xlsub.resize(n + 1);
glu.xlusup.resize(n + 1);
glu.xusub.resize(n + 1);
// Reserve memory for L/U factors
do {
if ((expand<ScalarVector>(glu.lusup, glu.nzlumax, 0, 0, num_expansions) < 0) ||
(expand<ScalarVector>(glu.ucol, glu.nzumax, 0, 0, num_expansions) < 0) ||
(expand<IndexVector>(glu.lsub, glu.nzlmax, 0, 0, num_expansions) < 0) ||
(expand<IndexVector>(glu.usub, glu.nzumax, 0, 1, num_expansions) < 0)) {
// Reduce the estimated size and retry
glu.nzlumax /= 2;
glu.nzumax /= 2;
glu.nzlmax /= 2;
if (glu.nzlumax < annz) return glu.nzlumax;
}
} while (!glu.lusup.size() || !glu.ucol.size() || !glu.lsub.size() || !glu.usub.size());
++num_expansions;
return 0;
} // end LuMemInit
/**
* \brief Expand the existing storage
* \param vec vector to expand
* \param[in,out] maxlen On input, previous size of vec (Number of elements to copy ). on output, new size
* \param nbElts current number of elements in the vector.
* \param memtype Type of the element to expand
* \param num_expansions Number of expansions
* \return 0 on success, > 0 size of the memory allocated so far
*/
template <typename Scalar, typename StorageIndex>
template <typename VectorType>
Index SparseLUImpl<Scalar, StorageIndex>::memXpand(VectorType& vec, Index& maxlen, Index nbElts, MemType memtype,
Index& num_expansions) {
Index failed_size;
if (memtype == USUB)
failed_size = this->expand<VectorType>(vec, maxlen, nbElts, 1, num_expansions);
else
failed_size = this->expand<VectorType>(vec, maxlen, nbElts, 0, num_expansions);
if (failed_size) return failed_size;
return 0;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSELU_MEMORY