| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| /* |
| |
| * NOTE: This file is the modified version of [s,d,c,z]column_dfs.c file in SuperLU |
| |
| * -- SuperLU routine (version 2.0) -- |
| * Univ. of California Berkeley, Xerox Palo Alto Research Center, |
| * and Lawrence Berkeley National Lab. |
| * November 15, 1997 |
| * |
| * Copyright (c) 1994 by Xerox Corporation. All rights reserved. |
| * |
| * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY |
| * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. |
| * |
| * Permission is hereby granted to use or copy this program for any |
| * purpose, provided the above notices are retained on all copies. |
| * Permission to modify the code and to distribute modified code is |
| * granted, provided the above notices are retained, and a notice that |
| * the code was modified is included with the above copyright notice. |
| */ |
| #ifndef SPARSELU_COLUMN_DFS_H |
| #define SPARSELU_COLUMN_DFS_H |
| |
| template <typename Scalar, typename StorageIndex> |
| class SparseLUImpl; |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <typename IndexVector, typename ScalarVector> |
| struct column_dfs_traits : no_assignment_operator { |
| typedef typename ScalarVector::Scalar Scalar; |
| typedef typename IndexVector::Scalar StorageIndex; |
| column_dfs_traits(Index jcol, Index& jsuper, typename SparseLUImpl<Scalar, StorageIndex>::GlobalLU_t& glu, |
| SparseLUImpl<Scalar, StorageIndex>& luImpl) |
| : m_jcol(jcol), m_jsuper_ref(jsuper), m_glu(glu), m_luImpl(luImpl) {} |
| bool update_segrep(Index /*krep*/, Index /*jj*/) { return true; } |
| void mem_expand(IndexVector& lsub, Index& nextl, Index chmark) { |
| if (nextl >= m_glu.nzlmax) m_luImpl.memXpand(lsub, m_glu.nzlmax, nextl, LSUB, m_glu.num_expansions); |
| if (chmark != (m_jcol - 1)) m_jsuper_ref = emptyIdxLU; |
| } |
| enum { ExpandMem = true }; |
| |
| Index m_jcol; |
| Index& m_jsuper_ref; |
| typename SparseLUImpl<Scalar, StorageIndex>::GlobalLU_t& m_glu; |
| SparseLUImpl<Scalar, StorageIndex>& m_luImpl; |
| }; |
| |
| /** |
| * \brief Performs a symbolic factorization on column jcol and decide the supernode boundary |
| * |
| * A supernode representative is the last column of a supernode. |
| * The nonzeros in U[*,j] are segments that end at supernodes representatives. |
| * The routine returns a list of the supernodal representatives |
| * in topological order of the dfs that generates them. |
| * The location of the first nonzero in each supernodal segment |
| * (supernodal entry location) is also returned. |
| * |
| * \param m number of rows in the matrix |
| * \param jcol Current column |
| * \param perm_r Row permutation |
| * \param maxsuper Maximum number of column allowed in a supernode |
| * \param [in,out] nseg Number of segments in current U[*,j] - new segments appended |
| * \param lsub_col defines the rhs vector to start the dfs |
| * \param [in,out] segrep Segment representatives - new segments appended |
| * \param repfnz First nonzero location in each row |
| * \param xprune |
| * \param marker marker[i] == jj, if i was visited during dfs of current column jj; |
| * \param parent |
| * \param xplore working array |
| * \param glu global LU data |
| * \return 0 success |
| * > 0 number of bytes allocated when run out of space |
| * |
| */ |
| template <typename Scalar, typename StorageIndex> |
| Index SparseLUImpl<Scalar, StorageIndex>::column_dfs(const Index m, const Index jcol, IndexVector& perm_r, |
| Index maxsuper, Index& nseg, BlockIndexVector lsub_col, |
| IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, |
| IndexVector& marker, IndexVector& parent, IndexVector& xplore, |
| GlobalLU_t& glu) { |
| Index jsuper = glu.supno(jcol); |
| Index nextl = glu.xlsub(jcol); |
| VectorBlock<IndexVector> marker2(marker, 2 * m, m); |
| |
| column_dfs_traits<IndexVector, ScalarVector> traits(jcol, jsuper, glu, *this); |
| |
| // For each nonzero in A(*,jcol) do dfs |
| for (Index k = 0; ((k < m) ? lsub_col[k] != emptyIdxLU : false); k++) { |
| Index krow = lsub_col(k); |
| lsub_col(k) = emptyIdxLU; |
| Index kmark = marker2(krow); |
| |
| // krow was visited before, go to the next nonz; |
| if (kmark == jcol) continue; |
| |
| dfs_kernel(StorageIndex(jcol), perm_r, nseg, glu.lsub, segrep, repfnz, xprune, marker2, parent, xplore, glu, nextl, |
| krow, traits); |
| } // for each nonzero ... |
| |
| Index fsupc; |
| StorageIndex nsuper = glu.supno(jcol); |
| StorageIndex jcolp1 = StorageIndex(jcol) + 1; |
| Index jcolm1 = jcol - 1; |
| |
| // check to see if j belongs in the same supernode as j-1 |
| if (jcol == 0) { // Do nothing for column 0 |
| nsuper = glu.supno(0) = 0; |
| } else { |
| fsupc = glu.xsup(nsuper); |
| StorageIndex jptr = glu.xlsub(jcol); // Not yet compressed |
| StorageIndex jm1ptr = glu.xlsub(jcolm1); |
| |
| // Use supernodes of type T2 : see SuperLU paper |
| if ((nextl - jptr != jptr - jm1ptr - 1)) jsuper = emptyIdxLU; |
| |
| // Make sure the number of columns in a supernode doesn't |
| // exceed threshold |
| if ((jcol - fsupc) >= maxsuper) jsuper = emptyIdxLU; |
| |
| /* If jcol starts a new supernode, reclaim storage space in |
| * glu.lsub from previous supernode. Note we only store |
| * the subscript set of the first and last columns of |
| * a supernode. (first for num values, last for pruning) |
| */ |
| if (jsuper == emptyIdxLU) { // starts a new supernode |
| if ((fsupc < jcolm1 - 1)) { // >= 3 columns in nsuper |
| StorageIndex ito = glu.xlsub(fsupc + 1); |
| glu.xlsub(jcolm1) = ito; |
| StorageIndex istop = ito + jptr - jm1ptr; |
| xprune(jcolm1) = istop; // initialize xprune(jcol-1) |
| glu.xlsub(jcol) = istop; |
| |
| for (StorageIndex ifrom = jm1ptr; ifrom < nextl; ++ifrom, ++ito) glu.lsub(ito) = glu.lsub(ifrom); |
| nextl = ito; // = istop + length(jcol) |
| } |
| nsuper++; |
| glu.supno(jcol) = nsuper; |
| } // if a new supernode |
| } // end else: jcol > 0 |
| |
| // Tidy up the pointers before exit |
| glu.xsup(nsuper + 1) = jcolp1; |
| glu.supno(jcolp1) = nsuper; |
| xprune(jcol) = StorageIndex(nextl); // Initialize upper bound for pruning |
| glu.xlsub(jcolp1) = StorageIndex(nextl); |
| |
| return 0; |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif |