blob: e5fb771579fcc71bcfcd8611b9aa960483034669 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]column_dfs.c file in SuperLU
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_COLUMN_DFS_H
#define SPARSELU_COLUMN_DFS_H
template <typename Scalar, typename StorageIndex>
class SparseLUImpl;
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <typename IndexVector, typename ScalarVector>
struct column_dfs_traits : no_assignment_operator {
typedef typename ScalarVector::Scalar Scalar;
typedef typename IndexVector::Scalar StorageIndex;
column_dfs_traits(Index jcol, Index& jsuper, typename SparseLUImpl<Scalar, StorageIndex>::GlobalLU_t& glu,
SparseLUImpl<Scalar, StorageIndex>& luImpl)
: m_jcol(jcol), m_jsuper_ref(jsuper), m_glu(glu), m_luImpl(luImpl) {}
bool update_segrep(Index /*krep*/, Index /*jj*/) { return true; }
void mem_expand(IndexVector& lsub, Index& nextl, Index chmark) {
if (nextl >= m_glu.nzlmax) m_luImpl.memXpand(lsub, m_glu.nzlmax, nextl, LSUB, m_glu.num_expansions);
if (chmark != (m_jcol - 1)) m_jsuper_ref = emptyIdxLU;
}
enum { ExpandMem = true };
Index m_jcol;
Index& m_jsuper_ref;
typename SparseLUImpl<Scalar, StorageIndex>::GlobalLU_t& m_glu;
SparseLUImpl<Scalar, StorageIndex>& m_luImpl;
};
/**
* \brief Performs a symbolic factorization on column jcol and decide the supernode boundary
*
* A supernode representative is the last column of a supernode.
* The nonzeros in U[*,j] are segments that end at supernodes representatives.
* The routine returns a list of the supernodal representatives
* in topological order of the dfs that generates them.
* The location of the first nonzero in each supernodal segment
* (supernodal entry location) is also returned.
*
* \param m number of rows in the matrix
* \param jcol Current column
* \param perm_r Row permutation
* \param maxsuper Maximum number of column allowed in a supernode
* \param [in,out] nseg Number of segments in current U[*,j] - new segments appended
* \param lsub_col defines the rhs vector to start the dfs
* \param [in,out] segrep Segment representatives - new segments appended
* \param repfnz First nonzero location in each row
* \param xprune
* \param marker marker[i] == jj, if i was visited during dfs of current column jj;
* \param parent
* \param xplore working array
* \param glu global LU data
* \return 0 success
* > 0 number of bytes allocated when run out of space
*
*/
template <typename Scalar, typename StorageIndex>
Index SparseLUImpl<Scalar, StorageIndex>::column_dfs(const Index m, const Index jcol, IndexVector& perm_r,
Index maxsuper, Index& nseg, BlockIndexVector lsub_col,
IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune,
IndexVector& marker, IndexVector& parent, IndexVector& xplore,
GlobalLU_t& glu) {
Index jsuper = glu.supno(jcol);
Index nextl = glu.xlsub(jcol);
VectorBlock<IndexVector> marker2(marker, 2 * m, m);
column_dfs_traits<IndexVector, ScalarVector> traits(jcol, jsuper, glu, *this);
// For each nonzero in A(*,jcol) do dfs
for (Index k = 0; ((k < m) ? lsub_col[k] != emptyIdxLU : false); k++) {
Index krow = lsub_col(k);
lsub_col(k) = emptyIdxLU;
Index kmark = marker2(krow);
// krow was visited before, go to the next nonz;
if (kmark == jcol) continue;
dfs_kernel(StorageIndex(jcol), perm_r, nseg, glu.lsub, segrep, repfnz, xprune, marker2, parent, xplore, glu, nextl,
krow, traits);
} // for each nonzero ...
Index fsupc;
StorageIndex nsuper = glu.supno(jcol);
StorageIndex jcolp1 = StorageIndex(jcol) + 1;
Index jcolm1 = jcol - 1;
// check to see if j belongs in the same supernode as j-1
if (jcol == 0) { // Do nothing for column 0
nsuper = glu.supno(0) = 0;
} else {
fsupc = glu.xsup(nsuper);
StorageIndex jptr = glu.xlsub(jcol); // Not yet compressed
StorageIndex jm1ptr = glu.xlsub(jcolm1);
// Use supernodes of type T2 : see SuperLU paper
if ((nextl - jptr != jptr - jm1ptr - 1)) jsuper = emptyIdxLU;
// Make sure the number of columns in a supernode doesn't
// exceed threshold
if ((jcol - fsupc) >= maxsuper) jsuper = emptyIdxLU;
/* If jcol starts a new supernode, reclaim storage space in
* glu.lsub from previous supernode. Note we only store
* the subscript set of the first and last columns of
* a supernode. (first for num values, last for pruning)
*/
if (jsuper == emptyIdxLU) { // starts a new supernode
if ((fsupc < jcolm1 - 1)) { // >= 3 columns in nsuper
StorageIndex ito = glu.xlsub(fsupc + 1);
glu.xlsub(jcolm1) = ito;
StorageIndex istop = ito + jptr - jm1ptr;
xprune(jcolm1) = istop; // initialize xprune(jcol-1)
glu.xlsub(jcol) = istop;
for (StorageIndex ifrom = jm1ptr; ifrom < nextl; ++ifrom, ++ito) glu.lsub(ito) = glu.lsub(ifrom);
nextl = ito; // = istop + length(jcol)
}
nsuper++;
glu.supno(jcol) = nsuper;
} // if a new supernode
} // end else: jcol > 0
// Tidy up the pointers before exit
glu.xsup(nsuper + 1) = jcolp1;
glu.supno(jcolp1) = nsuper;
xprune(jcol) = StorageIndex(nextl); // Initialize upper bound for pruning
glu.xlsub(jcolp1) = StorageIndex(nextl);
return 0;
}
} // end namespace internal
} // end namespace Eigen
#endif