blob: 66f2c2762a0b03ff8230c225b7777118a31847f2 [file] [log] [blame]
#include <iostream>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/IterativeLinearSolvers>
#include <unsupported/Eigen/IterativeSolvers>
class MatrixReplacement;
using Eigen::SparseMatrix;
namespace Eigen {
namespace internal {
// MatrixReplacement looks-like a SparseMatrix, so let's inherit its traits:
template <>
struct traits<MatrixReplacement> : public Eigen::internal::traits<Eigen::SparseMatrix<double> > {};
} // namespace internal
} // namespace Eigen
// Example of a matrix-free wrapper from a user type to Eigen's compatible type
// For the sake of simplicity, this example simply wrap a Eigen::SparseMatrix.
class MatrixReplacement : public Eigen::EigenBase<MatrixReplacement> {
public:
// Required typedefs, constants, and method:
typedef double Scalar;
typedef double RealScalar;
typedef int StorageIndex;
enum { ColsAtCompileTime = Eigen::Dynamic, MaxColsAtCompileTime = Eigen::Dynamic, IsRowMajor = false };
Index rows() const { return mp_mat->rows(); }
Index cols() const { return mp_mat->cols(); }
template <typename Rhs>
Eigen::Product<MatrixReplacement, Rhs, Eigen::AliasFreeProduct> operator*(const Eigen::MatrixBase<Rhs>& x) const {
return Eigen::Product<MatrixReplacement, Rhs, Eigen::AliasFreeProduct>(*this, x.derived());
}
// Custom API:
MatrixReplacement() : mp_mat(0) {}
void attachMyMatrix(const SparseMatrix<double>& mat) { mp_mat = &mat; }
const SparseMatrix<double> my_matrix() const { return *mp_mat; }
private:
const SparseMatrix<double>* mp_mat;
};
// Implementation of MatrixReplacement * Eigen::DenseVector though a specialization of internal::generic_product_impl:
namespace Eigen {
namespace internal {
template <typename Rhs>
struct generic_product_impl<MatrixReplacement, Rhs, SparseShape, DenseShape,
GemvProduct> // GEMV stands for matrix-vector
: generic_product_impl_base<MatrixReplacement, Rhs, generic_product_impl<MatrixReplacement, Rhs> > {
typedef typename Product<MatrixReplacement, Rhs>::Scalar Scalar;
template <typename Dest>
static void scaleAndAddTo(Dest& dst, const MatrixReplacement& lhs, const Rhs& rhs, const Scalar& alpha) {
// This method should implement "dst += alpha * lhs * rhs" inplace,
// however, for iterative solvers, alpha is always equal to 1, so let's not bother about it.
eigen_assert(alpha == Scalar(1) && "scaling is not implemented");
EIGEN_ONLY_USED_FOR_DEBUG(alpha);
// Here we could simply call dst.noalias() += lhs.my_matrix() * rhs,
// but let's do something fancier (and less efficient):
for (Index i = 0; i < lhs.cols(); ++i) dst += rhs(i) * lhs.my_matrix().col(i);
}
};
} // namespace internal
} // namespace Eigen
int main() {
int n = 10;
Eigen::SparseMatrix<double> S = Eigen::MatrixXd::Random(n, n).sparseView(0.5, 1);
S = S.transpose() * S;
MatrixReplacement A;
A.attachMyMatrix(S);
Eigen::VectorXd b(n), x;
b.setRandom();
// Solve Ax = b using various iterative solver with matrix-free version:
{
Eigen::ConjugateGradient<MatrixReplacement, Eigen::Lower | Eigen::Upper, Eigen::IdentityPreconditioner> cg;
cg.compute(A);
x = cg.solve(b);
std::cout << "CG: #iterations: " << cg.iterations() << ", estimated error: " << cg.error() << std::endl;
}
{
Eigen::BiCGSTAB<MatrixReplacement, Eigen::IdentityPreconditioner> bicg;
bicg.compute(A);
x = bicg.solve(b);
std::cout << "BiCGSTAB: #iterations: " << bicg.iterations() << ", estimated error: " << bicg.error() << std::endl;
}
{
Eigen::GMRES<MatrixReplacement, Eigen::IdentityPreconditioner> gmres;
gmres.compute(A);
x = gmres.solve(b);
std::cout << "GMRES: #iterations: " << gmres.iterations() << ", estimated error: " << gmres.error() << std::endl;
}
{
Eigen::DGMRES<MatrixReplacement, Eigen::IdentityPreconditioner> gmres;
gmres.compute(A);
x = gmres.solve(b);
std::cout << "DGMRES: #iterations: " << gmres.iterations() << ", estimated error: " << gmres.error() << std::endl;
}
{
Eigen::MINRES<MatrixReplacement, Eigen::Lower | Eigen::Upper, Eigen::IdentityPreconditioner> minres;
minres.compute(A);
x = minres.solve(b);
std::cout << "MINRES: #iterations: " << minres.iterations() << ", estimated error: " << minres.error()
<< std::endl;
}
}