blob: 1657236dfbb02acc32d8f17032894268ea26137e [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
static long int nb_transposed_copies;
#define EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN \
{ nb_transposed_copies++; }
#define VERIFY_TRANSPOSITION_COUNT(XPR, N) \
{ \
nb_transposed_copies = 0; \
XPR; \
if (nb_transposed_copies != N) std::cerr << "nb_transposed_copies == " << nb_transposed_copies << "\n"; \
VERIFY((#XPR) && nb_transposed_copies == N); \
}
static long int nb_temporaries;
#define EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN \
{ nb_temporaries++; }
#define VERIFY_TEMPORARY_COUNT(XPR, N) \
{ \
nb_temporaries = 0; \
XPR; \
if (nb_temporaries != N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
VERIFY((#XPR) && nb_temporaries == N); \
}
#include "sparse.h"
template <typename T>
bool is_sorted(const T& mat) {
for (Index k = 0; k < mat.outerSize(); ++k) {
Index prev = -1;
for (typename T::InnerIterator it(mat, k); it; ++it) {
if (prev >= it.index()) return false;
prev = it.index();
}
}
return true;
}
template <typename T>
typename internal::nested_eval<T, 1>::type eval(const T& xpr) {
VERIFY(int(internal::nested_eval<T, 1>::type::Flags & RowMajorBit) ==
int(internal::evaluator<T>::Flags & RowMajorBit));
return xpr;
}
template <int OtherStorage, typename SparseMatrixType>
void sparse_permutations(const SparseMatrixType& ref) {
const Index rows = ref.rows();
const Index cols = ref.cols();
typedef typename SparseMatrixType::Scalar Scalar;
typedef typename SparseMatrixType::StorageIndex StorageIndex;
typedef SparseMatrix<Scalar, OtherStorage, StorageIndex> OtherSparseMatrixType;
typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix;
typedef Matrix<StorageIndex, Dynamic, 1> VectorI;
// bool IsRowMajor1 = SparseMatrixType::IsRowMajor;
// bool IsRowMajor2 = OtherSparseMatrixType::IsRowMajor;
double density = (std::max)(8. / static_cast<double>(rows * cols), 0.01);
SparseMatrixType mat(rows, cols), up(rows, cols), lo(rows, cols);
OtherSparseMatrixType res;
DenseMatrix mat_d = DenseMatrix::Zero(rows, cols), up_sym_d, lo_sym_d, res_d;
initSparse<Scalar>(density, mat_d, mat, 0);
up = mat.template triangularView<Upper>();
lo = mat.template triangularView<Lower>();
up_sym_d = mat_d.template selfadjointView<Upper>();
lo_sym_d = mat_d.template selfadjointView<Lower>();
VERIFY_IS_APPROX(mat, mat_d);
VERIFY_IS_APPROX(up, DenseMatrix(mat_d.template triangularView<Upper>()));
VERIFY_IS_APPROX(lo, DenseMatrix(mat_d.template triangularView<Lower>()));
PermutationMatrix<Dynamic> p, p_null;
VectorI pi;
randomPermutationVector(pi, cols);
p.indices() = pi;
VERIFY(is_sorted(::eval(mat * p)));
VERIFY(is_sorted(res = mat * p));
VERIFY_TRANSPOSITION_COUNT(::eval(mat * p), 0);
VERIFY_TEMPORARY_COUNT(::eval(mat * p), 1)
res_d = mat_d * p;
VERIFY(res.isApprox(res_d) && "mat*p");
VERIFY(is_sorted(::eval(p * mat)));
VERIFY(is_sorted(res = p * mat));
VERIFY_TRANSPOSITION_COUNT(::eval(p * mat), 0);
VERIFY_TEMPORARY_COUNT(::eval(p * mat), 1);
res_d = p * mat_d;
VERIFY(res.isApprox(res_d) && "p*mat");
VERIFY(is_sorted((mat * p).eval()));
VERIFY(is_sorted(res = mat * p.inverse()));
VERIFY_TRANSPOSITION_COUNT(::eval(mat * p.inverse()), 0);
VERIFY_TEMPORARY_COUNT(::eval(mat * p.inverse()), 1);
res_d = mat * p.inverse();
VERIFY(res.isApprox(res_d) && "mat*inv(p)");
VERIFY(is_sorted((p * mat + p * mat).eval()));
VERIFY(is_sorted(res = p.inverse() * mat));
VERIFY_TRANSPOSITION_COUNT(::eval(p.inverse() * mat), 0);
VERIFY_TEMPORARY_COUNT(::eval(p.inverse() * mat), 1);
res_d = p.inverse() * mat_d;
VERIFY(res.isApprox(res_d) && "inv(p)*mat");
//
VERIFY(is_sorted((p * mat * p.inverse()).eval()));
VERIFY(is_sorted(res = mat.twistedBy(p)));
VERIFY_TRANSPOSITION_COUNT(::eval(p * mat * p.inverse()), 0);
res_d = (p * mat_d) * p.inverse();
VERIFY(res.isApprox(res_d) && "p*mat*inv(p)");
VERIFY(is_sorted(res = mat.template selfadjointView<Upper>().twistedBy(p_null)));
res_d = up_sym_d;
VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full");
VERIFY(is_sorted(res = mat.template selfadjointView<Lower>().twistedBy(p_null)));
res_d = lo_sym_d;
VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full");
VERIFY(is_sorted(res = up.template selfadjointView<Upper>().twistedBy(p_null)));
res_d = up_sym_d;
VERIFY(res.isApprox(res_d) && "upper selfadjoint to full");
VERIFY(is_sorted(res = lo.template selfadjointView<Lower>().twistedBy(p_null)));
res_d = lo_sym_d;
VERIFY(res.isApprox(res_d) && "lower selfadjoint full");
VERIFY(is_sorted(res = mat.template selfadjointView<Upper>()));
res_d = up_sym_d;
VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full");
VERIFY(is_sorted(res = mat.template selfadjointView<Lower>()));
res_d = lo_sym_d;
VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full");
VERIFY(is_sorted(res = up.template selfadjointView<Upper>()));
res_d = up_sym_d;
VERIFY(res.isApprox(res_d) && "upper selfadjoint to full");
VERIFY(is_sorted(res = lo.template selfadjointView<Lower>()));
res_d = lo_sym_d;
VERIFY(res.isApprox(res_d) && "lower selfadjoint full");
res.template selfadjointView<Upper>() = mat.template selfadjointView<Upper>();
res_d = up_sym_d.template triangularView<Upper>();
VERIFY(res.isApprox(res_d) && "full selfadjoint upper to upper");
res.template selfadjointView<Lower>() = mat.template selfadjointView<Upper>();
res_d = up_sym_d.template triangularView<Lower>();
VERIFY(res.isApprox(res_d) && "full selfadjoint upper to lower");
res.template selfadjointView<Upper>() = mat.template selfadjointView<Lower>();
res_d = lo_sym_d.template triangularView<Upper>();
VERIFY(res.isApprox(res_d) && "full selfadjoint lower to upper");
res.template selfadjointView<Lower>() = mat.template selfadjointView<Lower>();
res_d = lo_sym_d.template triangularView<Lower>();
VERIFY(res.isApprox(res_d) && "full selfadjoint lower to lower");
res.template selfadjointView<Upper>() = mat.template selfadjointView<Upper>().twistedBy(p);
res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Upper>();
VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to upper");
res.template selfadjointView<Upper>() = mat.template selfadjointView<Lower>().twistedBy(p);
res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Upper>();
VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to upper");
res.template selfadjointView<Lower>() = mat.template selfadjointView<Lower>().twistedBy(p);
res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Lower>();
VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to lower");
res.template selfadjointView<Lower>() = mat.template selfadjointView<Upper>().twistedBy(p);
res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Lower>();
VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to lower");
res.template selfadjointView<Upper>() = up.template selfadjointView<Upper>().twistedBy(p);
res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Upper>();
VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to upper");
res.template selfadjointView<Upper>() = lo.template selfadjointView<Lower>().twistedBy(p);
res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Upper>();
VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to upper");
res.template selfadjointView<Lower>() = lo.template selfadjointView<Lower>().twistedBy(p);
res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Lower>();
VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to lower");
res.template selfadjointView<Lower>() = up.template selfadjointView<Upper>().twistedBy(p);
res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Lower>();
VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to lower");
VERIFY(is_sorted(res = mat.template selfadjointView<Upper>().twistedBy(p)));
res_d = (p * up_sym_d) * p.inverse();
VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to full");
VERIFY(is_sorted(res = mat.template selfadjointView<Lower>().twistedBy(p)));
res_d = (p * lo_sym_d) * p.inverse();
VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to full");
VERIFY(is_sorted(res = up.template selfadjointView<Upper>().twistedBy(p)));
res_d = (p * up_sym_d) * p.inverse();
VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to full");
VERIFY(is_sorted(res = lo.template selfadjointView<Lower>().twistedBy(p)));
res_d = (p * lo_sym_d) * p.inverse();
VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to full");
}
template <typename Scalar>
void sparse_permutations_all(int size) {
CALL_SUBTEST((sparse_permutations<ColMajor>(SparseMatrix<Scalar, ColMajor>(size, size))));
CALL_SUBTEST((sparse_permutations<ColMajor>(SparseMatrix<Scalar, RowMajor>(size, size))));
CALL_SUBTEST((sparse_permutations<RowMajor>(SparseMatrix<Scalar, ColMajor>(size, size))));
CALL_SUBTEST((sparse_permutations<RowMajor>(SparseMatrix<Scalar, RowMajor>(size, size))));
}
EIGEN_DECLARE_TEST(sparse_permutations) {
for (int i = 0; i < g_repeat; i++) {
int s = Eigen::internal::random<int>(1, 50);
CALL_SUBTEST_1((sparse_permutations_all<double>(s)));
CALL_SUBTEST_2((sparse_permutations_all<std::complex<double> >(s)));
}
VERIFY((internal::is_same<
internal::permutation_matrix_product<SparseMatrix<double>, OnTheRight, false, SparseShape>::ReturnType,
internal::nested_eval<Product<SparseMatrix<double>, PermutationMatrix<Dynamic, Dynamic>, AliasFreeProduct>,
1>::type>::value));
VERIFY((internal::is_same<
internal::permutation_matrix_product<SparseMatrix<double>, OnTheLeft, false, SparseShape>::ReturnType,
internal::nested_eval<Product<PermutationMatrix<Dynamic, Dynamic>, SparseMatrix<double>, AliasFreeProduct>,
1>::type>::value));
}