| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_DENSECOEFFSBASE_H |
| #define EIGEN_DENSECOEFFSBASE_H |
| |
| namespace internal { |
| template<typename T> struct add_const_on_value_type_if_arithmetic |
| { |
| typedef typename conditional<is_arithmetic<T>::value, T, typename add_const_on_value_type<T>::type>::type type; |
| }; |
| } |
| |
| /** \brief Base class providing read-only coefficient access to matrices and arrays. |
| * \ingroup Core_Module |
| * \tparam Derived Type of the derived class |
| * \tparam ReadOnlyAccessors Constant indicating read-only access |
| * |
| * This class defines the \c operator() \c const function and friends, which can be used to read specific |
| * entries of a matrix or array. |
| * |
| * \sa DenseCoeffsBase<Derived, WriteAccessors>, DenseCoeffsBase<Derived, DirectAccessors>, |
| * \ref TopicClassHierarchy |
| */ |
| template<typename Derived> |
| class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived> |
| { |
| public: |
| typedef typename internal::traits<Derived>::StorageKind StorageKind; |
| typedef typename internal::traits<Derived>::Index Index; |
| typedef typename internal::traits<Derived>::Scalar Scalar; |
| typedef typename internal::packet_traits<Scalar>::type PacketScalar; |
| |
| // Explanation for this CoeffReturnType typedef. |
| // - This is the return type of the coeff() method. |
| // - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references |
| // to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value). |
| // - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems |
| // while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is |
| // not possible, since the underlying expressions might not offer a valid address the reference could be referring to. |
| typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit), |
| const Scalar&, |
| typename internal::conditional<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>::type |
| >::type CoeffReturnType; |
| |
| typedef typename internal::add_const_on_value_type_if_arithmetic< |
| typename internal::packet_traits<Scalar>::type |
| >::type PacketReturnType; |
| |
| typedef EigenBase<Derived> Base; |
| using Base::rows; |
| using Base::cols; |
| using Base::size; |
| using Base::derived; |
| |
| EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const |
| { |
| return int(Derived::RowsAtCompileTime) == 1 ? 0 |
| : int(Derived::ColsAtCompileTime) == 1 ? inner |
| : int(Derived::Flags)&RowMajorBit ? outer |
| : inner; |
| } |
| |
| EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const |
| { |
| return int(Derived::ColsAtCompileTime) == 1 ? 0 |
| : int(Derived::RowsAtCompileTime) == 1 ? inner |
| : int(Derived::Flags)&RowMajorBit ? inner |
| : outer; |
| } |
| |
| /** Short version: don't use this function, use |
| * \link operator()(Index,Index) const \endlink instead. |
| * |
| * Long version: this function is similar to |
| * \link operator()(Index,Index) const \endlink, but without the assertion. |
| * Use this for limiting the performance cost of debugging code when doing |
| * repeated coefficient access. Only use this when it is guaranteed that the |
| * parameters \a row and \a col are in range. |
| * |
| * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this |
| * function equivalent to \link operator()(Index,Index) const \endlink. |
| * |
| * \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const |
| */ |
| EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const |
| { |
| eigen_internal_assert(row >= 0 && row < rows() |
| && col >= 0 && col < cols()); |
| return derived().coeff(row, col); |
| } |
| |
| EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const |
| { |
| return coeff(rowIndexByOuterInner(outer, inner), |
| colIndexByOuterInner(outer, inner)); |
| } |
| |
| /** \returns the coefficient at given the given row and column. |
| * |
| * \sa operator()(Index,Index), operator[](Index) |
| */ |
| EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const |
| { |
| eigen_assert(row >= 0 && row < rows() |
| && col >= 0 && col < cols()); |
| return derived().coeff(row, col); |
| } |
| |
| /** Short version: don't use this function, use |
| * \link operator[](Index) const \endlink instead. |
| * |
| * Long version: this function is similar to |
| * \link operator[](Index) const \endlink, but without the assertion. |
| * Use this for limiting the performance cost of debugging code when doing |
| * repeated coefficient access. Only use this when it is guaranteed that the |
| * parameter \a index is in range. |
| * |
| * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this |
| * function equivalent to \link operator[](Index) const \endlink. |
| * |
| * \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const |
| */ |
| |
| EIGEN_STRONG_INLINE CoeffReturnType |
| coeff(Index index) const |
| { |
| eigen_internal_assert(index >= 0 && index < size()); |
| return derived().coeff(index); |
| } |
| |
| |
| /** \returns the coefficient at given index. |
| * |
| * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. |
| * |
| * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const, |
| * z() const, w() const |
| */ |
| |
| EIGEN_STRONG_INLINE CoeffReturnType |
| operator[](Index index) const |
| { |
| #ifndef EIGEN2_SUPPORT |
| EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, |
| THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) |
| #endif |
| eigen_assert(index >= 0 && index < size()); |
| return derived().coeff(index); |
| } |
| |
| /** \returns the coefficient at given index. |
| * |
| * This is synonymous to operator[](Index) const. |
| * |
| * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. |
| * |
| * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const, |
| * z() const, w() const |
| */ |
| |
| EIGEN_STRONG_INLINE CoeffReturnType |
| operator()(Index index) const |
| { |
| eigen_assert(index >= 0 && index < size()); |
| return derived().coeff(index); |
| } |
| |
| /** equivalent to operator[](0). */ |
| |
| EIGEN_STRONG_INLINE CoeffReturnType |
| x() const { return (*this)[0]; } |
| |
| /** equivalent to operator[](1). */ |
| |
| EIGEN_STRONG_INLINE CoeffReturnType |
| y() const { return (*this)[1]; } |
| |
| /** equivalent to operator[](2). */ |
| |
| EIGEN_STRONG_INLINE CoeffReturnType |
| z() const { return (*this)[2]; } |
| |
| /** equivalent to operator[](3). */ |
| |
| EIGEN_STRONG_INLINE CoeffReturnType |
| w() const { return (*this)[3]; } |
| |
| /** \internal |
| * \returns the packet of coefficients starting at the given row and column. It is your responsibility |
| * to ensure that a packet really starts there. This method is only available on expressions having the |
| * PacketAccessBit. |
| * |
| * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select |
| * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets |
| * starting at an address which is a multiple of the packet size. |
| */ |
| |
| template<int LoadMode> |
| EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const |
| { |
| eigen_internal_assert(row >= 0 && row < rows() |
| && col >= 0 && col < cols()); |
| return derived().template packet<LoadMode>(row,col); |
| } |
| |
| |
| /** \internal */ |
| template<int LoadMode> |
| EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const |
| { |
| return packet<LoadMode>(rowIndexByOuterInner(outer, inner), |
| colIndexByOuterInner(outer, inner)); |
| } |
| |
| /** \internal |
| * \returns the packet of coefficients starting at the given index. It is your responsibility |
| * to ensure that a packet really starts there. This method is only available on expressions having the |
| * PacketAccessBit and the LinearAccessBit. |
| * |
| * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select |
| * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets |
| * starting at an address which is a multiple of the packet size. |
| */ |
| |
| template<int LoadMode> |
| EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const |
| { |
| eigen_internal_assert(index >= 0 && index < size()); |
| return derived().template packet<LoadMode>(index); |
| } |
| |
| protected: |
| // explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase. |
| // But some methods are only available in the DirectAccess case. |
| // So we add dummy methods here with these names, so that "using... " doesn't fail. |
| // It's not private so that the child class DenseBase can access them, and it's not public |
| // either since it's an implementation detail, so has to be protected. |
| void coeffRef(); |
| void coeffRefByOuterInner(); |
| void writePacket(); |
| void writePacketByOuterInner(); |
| void copyCoeff(); |
| void copyCoeffByOuterInner(); |
| void copyPacket(); |
| void copyPacketByOuterInner(); |
| void stride(); |
| void innerStride(); |
| void outerStride(); |
| void rowStride(); |
| void colStride(); |
| }; |
| |
| /** \brief Base class providing read/write coefficient access to matrices and arrays. |
| * \ingroup Core_Module |
| * \tparam Derived Type of the derived class |
| * \tparam WriteAccessors Constant indicating read/write access |
| * |
| * This class defines the non-const \c operator() function and friends, which can be used to write specific |
| * entries of a matrix or array. This class inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which |
| * defines the const variant for reading specific entries. |
| * |
| * \sa DenseCoeffsBase<Derived, DirectAccessors>, \ref TopicClassHierarchy |
| */ |
| template<typename Derived> |
| class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors> |
| { |
| public: |
| |
| typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base; |
| |
| typedef typename internal::traits<Derived>::StorageKind StorageKind; |
| typedef typename internal::traits<Derived>::Index Index; |
| typedef typename internal::traits<Derived>::Scalar Scalar; |
| typedef typename internal::packet_traits<Scalar>::type PacketScalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| using Base::coeff; |
| using Base::rows; |
| using Base::cols; |
| using Base::size; |
| using Base::derived; |
| using Base::rowIndexByOuterInner; |
| using Base::colIndexByOuterInner; |
| using Base::operator[]; |
| using Base::operator(); |
| using Base::x; |
| using Base::y; |
| using Base::z; |
| using Base::w; |
| |
| /** Short version: don't use this function, use |
| * \link operator()(Index,Index) \endlink instead. |
| * |
| * Long version: this function is similar to |
| * \link operator()(Index,Index) \endlink, but without the assertion. |
| * Use this for limiting the performance cost of debugging code when doing |
| * repeated coefficient access. Only use this when it is guaranteed that the |
| * parameters \a row and \a col are in range. |
| * |
| * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this |
| * function equivalent to \link operator()(Index,Index) \endlink. |
| * |
| * \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index) |
| */ |
| EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col) |
| { |
| eigen_internal_assert(row >= 0 && row < rows() |
| && col >= 0 && col < cols()); |
| return derived().coeffRef(row, col); |
| } |
| |
| EIGEN_STRONG_INLINE Scalar& |
| coeffRefByOuterInner(Index outer, Index inner) |
| { |
| return coeffRef(rowIndexByOuterInner(outer, inner), |
| colIndexByOuterInner(outer, inner)); |
| } |
| |
| /** \returns a reference to the coefficient at given the given row and column. |
| * |
| * \sa operator[](Index) |
| */ |
| |
| EIGEN_STRONG_INLINE Scalar& |
| operator()(Index row, Index col) |
| { |
| eigen_assert(row >= 0 && row < rows() |
| && col >= 0 && col < cols()); |
| return derived().coeffRef(row, col); |
| } |
| |
| |
| /** Short version: don't use this function, use |
| * \link operator[](Index) \endlink instead. |
| * |
| * Long version: this function is similar to |
| * \link operator[](Index) \endlink, but without the assertion. |
| * Use this for limiting the performance cost of debugging code when doing |
| * repeated coefficient access. Only use this when it is guaranteed that the |
| * parameters \a row and \a col are in range. |
| * |
| * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this |
| * function equivalent to \link operator[](Index) \endlink. |
| * |
| * \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index) |
| */ |
| |
| EIGEN_STRONG_INLINE Scalar& |
| coeffRef(Index index) |
| { |
| eigen_internal_assert(index >= 0 && index < size()); |
| return derived().coeffRef(index); |
| } |
| |
| /** \returns a reference to the coefficient at given index. |
| * |
| * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. |
| * |
| * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w() |
| */ |
| |
| EIGEN_STRONG_INLINE Scalar& |
| operator[](Index index) |
| { |
| #ifndef EIGEN2_SUPPORT |
| EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, |
| THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) |
| #endif |
| eigen_assert(index >= 0 && index < size()); |
| return derived().coeffRef(index); |
| } |
| |
| /** \returns a reference to the coefficient at given index. |
| * |
| * This is synonymous to operator[](Index). |
| * |
| * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. |
| * |
| * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w() |
| */ |
| |
| EIGEN_STRONG_INLINE Scalar& |
| operator()(Index index) |
| { |
| eigen_assert(index >= 0 && index < size()); |
| return derived().coeffRef(index); |
| } |
| |
| /** equivalent to operator[](0). */ |
| |
| EIGEN_STRONG_INLINE Scalar& |
| x() { return (*this)[0]; } |
| |
| /** equivalent to operator[](1). */ |
| |
| EIGEN_STRONG_INLINE Scalar& |
| y() { return (*this)[1]; } |
| |
| /** equivalent to operator[](2). */ |
| |
| EIGEN_STRONG_INLINE Scalar& |
| z() { return (*this)[2]; } |
| |
| /** equivalent to operator[](3). */ |
| |
| EIGEN_STRONG_INLINE Scalar& |
| w() { return (*this)[3]; } |
| |
| /** \internal |
| * Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility |
| * to ensure that a packet really starts there. This method is only available on expressions having the |
| * PacketAccessBit. |
| * |
| * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select |
| * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets |
| * starting at an address which is a multiple of the packet size. |
| */ |
| |
| template<int StoreMode> |
| EIGEN_STRONG_INLINE void writePacket |
| (Index row, Index col, const typename internal::packet_traits<Scalar>::type& x) |
| { |
| eigen_internal_assert(row >= 0 && row < rows() |
| && col >= 0 && col < cols()); |
| derived().template writePacket<StoreMode>(row,col,x); |
| } |
| |
| |
| /** \internal */ |
| template<int StoreMode> |
| EIGEN_STRONG_INLINE void writePacketByOuterInner |
| (Index outer, Index inner, const typename internal::packet_traits<Scalar>::type& x) |
| { |
| writePacket<StoreMode>(rowIndexByOuterInner(outer, inner), |
| colIndexByOuterInner(outer, inner), |
| x); |
| } |
| |
| /** \internal |
| * Stores the given packet of coefficients, at the given index in this expression. It is your responsibility |
| * to ensure that a packet really starts there. This method is only available on expressions having the |
| * PacketAccessBit and the LinearAccessBit. |
| * |
| * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select |
| * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets |
| * starting at an address which is a multiple of the packet size. |
| */ |
| template<int StoreMode> |
| EIGEN_STRONG_INLINE void writePacket |
| (Index index, const typename internal::packet_traits<Scalar>::type& x) |
| { |
| eigen_internal_assert(index >= 0 && index < size()); |
| derived().template writePacket<StoreMode>(index,x); |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| |
| /** \internal Copies the coefficient at position (row,col) of other into *this. |
| * |
| * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code |
| * with usual assignments. |
| * |
| * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. |
| */ |
| |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other) |
| { |
| eigen_internal_assert(row >= 0 && row < rows() |
| && col >= 0 && col < cols()); |
| derived().coeffRef(row, col) = other.derived().coeff(row, col); |
| } |
| |
| /** \internal Copies the coefficient at the given index of other into *this. |
| * |
| * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code |
| * with usual assignments. |
| * |
| * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. |
| */ |
| |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE void copyCoeff(Index index, const DenseBase<OtherDerived>& other) |
| { |
| eigen_internal_assert(index >= 0 && index < size()); |
| derived().coeffRef(index) = other.derived().coeff(index); |
| } |
| |
| |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE void copyCoeffByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other) |
| { |
| const Index row = rowIndexByOuterInner(outer,inner); |
| const Index col = colIndexByOuterInner(outer,inner); |
| // derived() is important here: copyCoeff() may be reimplemented in Derived! |
| derived().copyCoeff(row, col, other); |
| } |
| |
| /** \internal Copies the packet at position (row,col) of other into *this. |
| * |
| * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code |
| * with usual assignments. |
| * |
| * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. |
| */ |
| |
| template<typename OtherDerived, int StoreMode, int LoadMode> |
| EIGEN_STRONG_INLINE void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other) |
| { |
| eigen_internal_assert(row >= 0 && row < rows() |
| && col >= 0 && col < cols()); |
| derived().template writePacket<StoreMode>(row, col, |
| other.derived().template packet<LoadMode>(row, col)); |
| } |
| |
| /** \internal Copies the packet at the given index of other into *this. |
| * |
| * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code |
| * with usual assignments. |
| * |
| * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. |
| */ |
| |
| template<typename OtherDerived, int StoreMode, int LoadMode> |
| EIGEN_STRONG_INLINE void copyPacket(Index index, const DenseBase<OtherDerived>& other) |
| { |
| eigen_internal_assert(index >= 0 && index < size()); |
| derived().template writePacket<StoreMode>(index, |
| other.derived().template packet<LoadMode>(index)); |
| } |
| |
| /** \internal */ |
| template<typename OtherDerived, int StoreMode, int LoadMode> |
| EIGEN_STRONG_INLINE void copyPacketByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other) |
| { |
| const Index row = rowIndexByOuterInner(outer,inner); |
| const Index col = colIndexByOuterInner(outer,inner); |
| // derived() is important here: copyCoeff() may be reimplemented in Derived! |
| derived().template copyPacket< OtherDerived, StoreMode, LoadMode>(row, col, other); |
| } |
| #endif |
| |
| }; |
| |
| /** \brief Base class providing direct read-only coefficient access to matrices and arrays. |
| * \ingroup Core_Module |
| * \tparam Derived Type of the derived class |
| * \tparam DirectAccessors Constant indicating direct access |
| * |
| * This class defines functions to work with strides which can be used to access entries directly. This class |
| * inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which defines functions to access entries read-only using |
| * \c operator() . |
| * |
| * \sa \ref TopicClassHierarchy |
| */ |
| template<typename Derived> |
| class DenseCoeffsBase<Derived, DirectAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors> |
| { |
| public: |
| |
| typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base; |
| typedef typename internal::traits<Derived>::Index Index; |
| typedef typename internal::traits<Derived>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| using Base::rows; |
| using Base::cols; |
| using Base::size; |
| using Base::derived; |
| |
| /** \returns the pointer increment between two consecutive elements within a slice in the inner direction. |
| * |
| * \sa outerStride(), rowStride(), colStride() |
| */ |
| inline Index innerStride() const |
| { |
| return derived().innerStride(); |
| } |
| |
| /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns |
| * in a column-major matrix). |
| * |
| * \sa innerStride(), rowStride(), colStride() |
| */ |
| inline Index outerStride() const |
| { |
| return derived().outerStride(); |
| } |
| |
| // FIXME shall we remove it ? |
| inline Index stride() const |
| { |
| return Derived::IsVectorAtCompileTime ? innerStride() : outerStride(); |
| } |
| |
| /** \returns the pointer increment between two consecutive rows. |
| * |
| * \sa innerStride(), outerStride(), colStride() |
| */ |
| inline Index rowStride() const |
| { |
| return Derived::IsRowMajor ? outerStride() : innerStride(); |
| } |
| |
| /** \returns the pointer increment between two consecutive columns. |
| * |
| * \sa innerStride(), outerStride(), rowStride() |
| */ |
| inline Index colStride() const |
| { |
| return Derived::IsRowMajor ? innerStride() : outerStride(); |
| } |
| }; |
| |
| /** \brief Base class providing direct read/write coefficient access to matrices and arrays. |
| * \ingroup Core_Module |
| * \tparam Derived Type of the derived class |
| * \tparam DirectAccessors Constant indicating direct access |
| * |
| * This class defines functions to work with strides which can be used to access entries directly. This class |
| * inherits DenseCoeffsBase<Derived, WriteAccessors> which defines functions to access entries read/write using |
| * \c operator(). |
| * |
| * \sa \ref TopicClassHierarchy |
| */ |
| template<typename Derived> |
| class DenseCoeffsBase<Derived, DirectWriteAccessors> |
| : public DenseCoeffsBase<Derived, WriteAccessors> |
| { |
| public: |
| |
| typedef DenseCoeffsBase<Derived, WriteAccessors> Base; |
| typedef typename internal::traits<Derived>::Index Index; |
| typedef typename internal::traits<Derived>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| using Base::rows; |
| using Base::cols; |
| using Base::size; |
| using Base::derived; |
| |
| /** \returns the pointer increment between two consecutive elements within a slice in the inner direction. |
| * |
| * \sa outerStride(), rowStride(), colStride() |
| */ |
| inline Index innerStride() const |
| { |
| return derived().innerStride(); |
| } |
| |
| /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns |
| * in a column-major matrix). |
| * |
| * \sa innerStride(), rowStride(), colStride() |
| */ |
| inline Index outerStride() const |
| { |
| return derived().outerStride(); |
| } |
| |
| // FIXME shall we remove it ? |
| inline Index stride() const |
| { |
| return Derived::IsVectorAtCompileTime ? innerStride() : outerStride(); |
| } |
| |
| /** \returns the pointer increment between two consecutive rows. |
| * |
| * \sa innerStride(), outerStride(), colStride() |
| */ |
| inline Index rowStride() const |
| { |
| return Derived::IsRowMajor ? outerStride() : innerStride(); |
| } |
| |
| /** \returns the pointer increment between two consecutive columns. |
| * |
| * \sa innerStride(), outerStride(), rowStride() |
| */ |
| inline Index colStride() const |
| { |
| return Derived::IsRowMajor ? innerStride() : outerStride(); |
| } |
| }; |
| |
| namespace internal { |
| |
| template<typename Derived, bool JustReturnZero> |
| struct first_aligned_impl |
| { |
| inline static typename Derived::Index run(const Derived&) |
| { return 0; } |
| }; |
| |
| template<typename Derived> |
| struct first_aligned_impl<Derived, false> |
| { |
| inline static typename Derived::Index run(const Derived& m) |
| { |
| return first_aligned(&m.const_cast_derived().coeffRef(0,0), m.size()); |
| } |
| }; |
| |
| /** \internal \returns the index of the first element of the array that is well aligned for vectorization. |
| * |
| * There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more |
| * documentation. |
| */ |
| template<typename Derived> |
| inline static typename Derived::Index first_aligned(const Derived& m) |
| { |
| return first_aligned_impl |
| <Derived, (Derived::Flags & AlignedBit) || !(Derived::Flags & DirectAccessBit)> |
| ::run(m); |
| } |
| |
| template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret> |
| struct inner_stride_at_compile_time |
| { |
| enum { ret = traits<Derived>::InnerStrideAtCompileTime }; |
| }; |
| |
| template<typename Derived> |
| struct inner_stride_at_compile_time<Derived, false> |
| { |
| enum { ret = 0 }; |
| }; |
| |
| template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret> |
| struct outer_stride_at_compile_time |
| { |
| enum { ret = traits<Derived>::OuterStrideAtCompileTime }; |
| }; |
| |
| template<typename Derived> |
| struct outer_stride_at_compile_time<Derived, false> |
| { |
| enum { ret = 0 }; |
| }; |
| |
| } // end namespace internal |
| |
| #endif // EIGEN_DENSECOEFFSBASE_H |