|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. Eigen itself is part of the KDE project. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \class Hyperplane | 
|  | * | 
|  | * \brief A hyperplane | 
|  | * | 
|  | * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n. | 
|  | * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane. | 
|  | * | 
|  | * \param _Scalar the scalar type, i.e., the type of the coefficients | 
|  | * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. | 
|  | *             Notice that the dimension of the hyperplane is _AmbientDim-1. | 
|  | * | 
|  | * This class represents an hyperplane as the zero set of the implicit equation | 
|  | * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part) | 
|  | * and \f$ d \f$ is the distance (offset) to the origin. | 
|  | */ | 
|  | template <typename _Scalar, int _AmbientDim> | 
|  | class Hyperplane | 
|  | { | 
|  | public: | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1) | 
|  | enum { AmbientDimAtCompileTime = _AmbientDim }; | 
|  | typedef _Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; | 
|  | typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic | 
|  | ? Dynamic | 
|  | : int(AmbientDimAtCompileTime)+1,1> Coefficients; | 
|  | typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType; | 
|  |  | 
|  | /** Default constructor without initialization */ | 
|  | inline explicit Hyperplane() {} | 
|  |  | 
|  | /** Constructs a dynamic-size hyperplane with \a _dim the dimension | 
|  | * of the ambient space */ | 
|  | inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {} | 
|  |  | 
|  | /** Construct a plane from its normal \a n and a point \a e onto the plane. | 
|  | * \warning the vector normal is assumed to be normalized. | 
|  | */ | 
|  | inline Hyperplane(const VectorType& n, const VectorType& e) | 
|  | : m_coeffs(n.size()+1) | 
|  | { | 
|  | normal() = n; | 
|  | offset() = -e.eigen2_dot(n); | 
|  | } | 
|  |  | 
|  | /** Constructs a plane from its normal \a n and distance to the origin \a d | 
|  | * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$. | 
|  | * \warning the vector normal is assumed to be normalized. | 
|  | */ | 
|  | inline Hyperplane(const VectorType& n, Scalar d) | 
|  | : m_coeffs(n.size()+1) | 
|  | { | 
|  | normal() = n; | 
|  | offset() = d; | 
|  | } | 
|  |  | 
|  | /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space | 
|  | * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made. | 
|  | */ | 
|  | static inline Hyperplane Through(const VectorType& p0, const VectorType& p1) | 
|  | { | 
|  | Hyperplane result(p0.size()); | 
|  | result.normal() = (p1 - p0).unitOrthogonal(); | 
|  | result.offset() = -result.normal().eigen2_dot(p0); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** Constructs a hyperplane passing through the three points. The dimension of the ambient space | 
|  | * is required to be exactly 3. | 
|  | */ | 
|  | static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3) | 
|  | Hyperplane result(p0.size()); | 
|  | result.normal() = (p2 - p0).cross(p1 - p0).normalized(); | 
|  | result.offset() = -result.normal().eigen2_dot(p0); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** Constructs a hyperplane passing through the parametrized line \a parametrized. | 
|  | * If the dimension of the ambient space is greater than 2, then there isn't uniqueness, | 
|  | * so an arbitrary choice is made. | 
|  | */ | 
|  | // FIXME to be consitent with the rest this could be implemented as a static Through function ?? | 
|  | explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized) | 
|  | { | 
|  | normal() = parametrized.direction().unitOrthogonal(); | 
|  | offset() = -normal().eigen2_dot(parametrized.origin()); | 
|  | } | 
|  |  | 
|  | ~Hyperplane() {} | 
|  |  | 
|  | /** \returns the dimension in which the plane holds */ | 
|  | inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); } | 
|  |  | 
|  | /** normalizes \c *this */ | 
|  | void normalize(void) | 
|  | { | 
|  | m_coeffs /= normal().norm(); | 
|  | } | 
|  |  | 
|  | /** \returns the signed distance between the plane \c *this and a point \a p. | 
|  | * \sa absDistance() | 
|  | */ | 
|  | inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); } | 
|  |  | 
|  | /** \returns the absolute distance between the plane \c *this and a point \a p. | 
|  | * \sa signedDistance() | 
|  | */ | 
|  | inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); } | 
|  |  | 
|  | /** \returns the projection of a point \a p onto the plane \c *this. | 
|  | */ | 
|  | inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); } | 
|  |  | 
|  | /** \returns a constant reference to the unit normal vector of the plane, which corresponds | 
|  | * to the linear part of the implicit equation. | 
|  | */ | 
|  | inline const NormalReturnType normal() const { return NormalReturnType(*const_cast<Coefficients*>(&m_coeffs),0,0,dim(),1); } | 
|  |  | 
|  | /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds | 
|  | * to the linear part of the implicit equation. | 
|  | */ | 
|  | inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); } | 
|  |  | 
|  | /** \returns the distance to the origin, which is also the "constant term" of the implicit equation | 
|  | * \warning the vector normal is assumed to be normalized. | 
|  | */ | 
|  | inline const Scalar& offset() const { return m_coeffs.coeff(dim()); } | 
|  |  | 
|  | /** \returns a non-constant reference to the distance to the origin, which is also the constant part | 
|  | * of the implicit equation */ | 
|  | inline Scalar& offset() { return m_coeffs(dim()); } | 
|  |  | 
|  | /** \returns a constant reference to the coefficients c_i of the plane equation: | 
|  | * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ | 
|  | */ | 
|  | inline const Coefficients& coeffs() const { return m_coeffs; } | 
|  |  | 
|  | /** \returns a non-constant reference to the coefficients c_i of the plane equation: | 
|  | * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ | 
|  | */ | 
|  | inline Coefficients& coeffs() { return m_coeffs; } | 
|  |  | 
|  | /** \returns the intersection of *this with \a other. | 
|  | * | 
|  | * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines. | 
|  | * | 
|  | * \note If \a other is approximately parallel to *this, this method will return any point on *this. | 
|  | */ | 
|  | VectorType intersection(const Hyperplane& other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) | 
|  | Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0); | 
|  | // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests | 
|  | // whether the two lines are approximately parallel. | 
|  | if(ei_isMuchSmallerThan(det, Scalar(1))) | 
|  | {   // special case where the two lines are approximately parallel. Pick any point on the first line. | 
|  | if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0))) | 
|  | return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0)); | 
|  | else | 
|  | return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0)); | 
|  | } | 
|  | else | 
|  | {   // general case | 
|  | Scalar invdet = Scalar(1) / det; | 
|  | return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)), | 
|  | invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2))); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this. | 
|  | * | 
|  | * \param mat the Dim x Dim transformation matrix | 
|  | * \param traits specifies whether the matrix \a mat represents an Isometry | 
|  | *               or a more generic Affine transformation. The default is Affine. | 
|  | */ | 
|  | template<typename XprType> | 
|  | inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine) | 
|  | { | 
|  | if (traits==Affine) | 
|  | normal() = mat.inverse().transpose() * normal(); | 
|  | else if (traits==Isometry) | 
|  | normal() = mat * normal(); | 
|  | else | 
|  | { | 
|  | ei_assert("invalid traits value in Hyperplane::transform()"); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies the transformation \a t to \c *this and returns a reference to \c *this. | 
|  | * | 
|  | * \param t the transformation of dimension Dim | 
|  | * \param traits specifies whether the transformation \a t represents an Isometry | 
|  | *               or a more generic Affine transformation. The default is Affine. | 
|  | *               Other kind of transformations are not supported. | 
|  | */ | 
|  | inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t, | 
|  | TransformTraits traits = Affine) | 
|  | { | 
|  | transform(t.linear(), traits); | 
|  | offset() -= t.translation().eigen2_dot(normal()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|  | * | 
|  | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|  | * then this function smartly returns a const reference to \c *this. | 
|  | */ | 
|  | template<typename NewScalarType> | 
|  | inline typename internal::cast_return_type<Hyperplane, | 
|  | Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const | 
|  | { | 
|  | return typename internal::cast_return_type<Hyperplane, | 
|  | Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this); | 
|  | } | 
|  |  | 
|  | /** Copy constructor with scalar type conversion */ | 
|  | template<typename OtherScalarType> | 
|  | inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other) | 
|  | { m_coeffs = other.coeffs().template cast<Scalar>(); } | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \sa MatrixBase::isApprox() */ | 
|  | bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const | 
|  | { return m_coeffs.isApprox(other.m_coeffs, prec); } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | Coefficients m_coeffs; | 
|  | }; |