|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. Eigen itself is part of the KDE project. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway | 
|  |  | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \class ParametrizedLine | 
|  | * | 
|  | * \brief A parametrized line | 
|  | * | 
|  | * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit | 
|  | * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to | 
|  | * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ l \in \mathbf{R} \f$. | 
|  | * | 
|  | * \param _Scalar the scalar type, i.e., the type of the coefficients | 
|  | * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. | 
|  | */ | 
|  | template <typename _Scalar, int _AmbientDim> | 
|  | class ParametrizedLine | 
|  | { | 
|  | public: | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim) | 
|  | enum { AmbientDimAtCompileTime = _AmbientDim }; | 
|  | typedef _Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; | 
|  |  | 
|  | /** Default constructor without initialization */ | 
|  | inline explicit ParametrizedLine() {} | 
|  |  | 
|  | /** Constructs a dynamic-size line with \a _dim the dimension | 
|  | * of the ambient space */ | 
|  | inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {} | 
|  |  | 
|  | /** Initializes a parametrized line of direction \a direction and origin \a origin. | 
|  | * \warning the vector direction is assumed to be normalized. | 
|  | */ | 
|  | ParametrizedLine(const VectorType& origin, const VectorType& direction) | 
|  | : m_origin(origin), m_direction(direction) {} | 
|  |  | 
|  | explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane); | 
|  |  | 
|  | /** Constructs a parametrized line going from \a p0 to \a p1. */ | 
|  | static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1) | 
|  | { return ParametrizedLine(p0, (p1-p0).normalized()); } | 
|  |  | 
|  | ~ParametrizedLine() {} | 
|  |  | 
|  | /** \returns the dimension in which the line holds */ | 
|  | inline int dim() const { return m_direction.size(); } | 
|  |  | 
|  | const VectorType& origin() const { return m_origin; } | 
|  | VectorType& origin() { return m_origin; } | 
|  |  | 
|  | const VectorType& direction() const { return m_direction; } | 
|  | VectorType& direction() { return m_direction; } | 
|  |  | 
|  | /** \returns the squared distance of a point \a p to its projection onto the line \c *this. | 
|  | * \sa distance() | 
|  | */ | 
|  | RealScalar squaredDistance(const VectorType& p) const | 
|  | { | 
|  | VectorType diff = p-origin(); | 
|  | return (diff - diff.eigen2_dot(direction())* direction()).squaredNorm(); | 
|  | } | 
|  | /** \returns the distance of a point \a p to its projection onto the line \c *this. | 
|  | * \sa squaredDistance() | 
|  | */ | 
|  | RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); } | 
|  |  | 
|  | /** \returns the projection of a point \a p onto the line \c *this. */ | 
|  | VectorType projection(const VectorType& p) const | 
|  | { return origin() + (p-origin()).eigen2_dot(direction()) * direction(); } | 
|  |  | 
|  | Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane); | 
|  |  | 
|  | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|  | * | 
|  | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|  | * then this function smartly returns a const reference to \c *this. | 
|  | */ | 
|  | template<typename NewScalarType> | 
|  | inline typename internal::cast_return_type<ParametrizedLine, | 
|  | ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type cast() const | 
|  | { | 
|  | return typename internal::cast_return_type<ParametrizedLine, | 
|  | ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type(*this); | 
|  | } | 
|  |  | 
|  | /** Copy constructor with scalar type conversion */ | 
|  | template<typename OtherScalarType> | 
|  | inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime>& other) | 
|  | { | 
|  | m_origin = other.origin().template cast<Scalar>(); | 
|  | m_direction = other.direction().template cast<Scalar>(); | 
|  | } | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \sa MatrixBase::isApprox() */ | 
|  | bool isApprox(const ParametrizedLine& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const | 
|  | { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | VectorType m_origin, m_direction; | 
|  | }; | 
|  |  | 
|  | /** Constructs a parametrized line from a 2D hyperplane | 
|  | * | 
|  | * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line | 
|  | */ | 
|  | template <typename _Scalar, int _AmbientDim> | 
|  | inline ParametrizedLine<_Scalar, _AmbientDim>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) | 
|  | direction() = hyperplane.normal().unitOrthogonal(); | 
|  | origin() = -hyperplane.normal()*hyperplane.offset(); | 
|  | } | 
|  |  | 
|  | /** \returns the parameter value of the intersection between \c *this and the given hyperplane | 
|  | */ | 
|  | template <typename _Scalar, int _AmbientDim> | 
|  | inline _Scalar ParametrizedLine<_Scalar, _AmbientDim>::intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane) | 
|  | { | 
|  | return -(hyperplane.offset()+origin().eigen2_dot(hyperplane.normal())) | 
|  | /(direction().eigen2_dot(hyperplane.normal())); | 
|  | } |