|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. Eigen itself is part of the KDE project. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway | 
|  |  | 
|  | template<typename Other, | 
|  | int OtherRows=Other::RowsAtCompileTime, | 
|  | int OtherCols=Other::ColsAtCompileTime> | 
|  | struct ei_quaternion_assign_impl; | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \class Quaternion | 
|  | * | 
|  | * \brief The quaternion class used to represent 3D orientations and rotations | 
|  | * | 
|  | * \param _Scalar the scalar type, i.e., the type of the coefficients | 
|  | * | 
|  | * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of | 
|  | * orientations and rotations of objects in three dimensions. Compared to other representations | 
|  | * like Euler angles or 3x3 matrices, quatertions offer the following advantages: | 
|  | * \li \b compact storage (4 scalars) | 
|  | * \li \b efficient to compose (28 flops), | 
|  | * \li \b stable spherical interpolation | 
|  | * | 
|  | * The following two typedefs are provided for convenience: | 
|  | * \li \c Quaternionf for \c float | 
|  | * \li \c Quaterniond for \c double | 
|  | * | 
|  | * \sa  class AngleAxis, class Transform | 
|  | */ | 
|  |  | 
|  | template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> > | 
|  | { | 
|  | typedef _Scalar Scalar; | 
|  | }; | 
|  |  | 
|  | template<typename _Scalar> | 
|  | class Quaternion : public RotationBase<Quaternion<_Scalar>,3> | 
|  | { | 
|  | typedef RotationBase<Quaternion<_Scalar>,3> Base; | 
|  |  | 
|  | public: | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4) | 
|  |  | 
|  | using Base::operator*; | 
|  |  | 
|  | /** the scalar type of the coefficients */ | 
|  | typedef _Scalar Scalar; | 
|  |  | 
|  | /** the type of the Coefficients 4-vector */ | 
|  | typedef Matrix<Scalar, 4, 1> Coefficients; | 
|  | /** the type of a 3D vector */ | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  | /** the equivalent rotation matrix type */ | 
|  | typedef Matrix<Scalar,3,3> Matrix3; | 
|  | /** the equivalent angle-axis type */ | 
|  | typedef AngleAxis<Scalar> AngleAxisType; | 
|  |  | 
|  | /** \returns the \c x coefficient */ | 
|  | inline Scalar x() const { return m_coeffs.coeff(0); } | 
|  | /** \returns the \c y coefficient */ | 
|  | inline Scalar y() const { return m_coeffs.coeff(1); } | 
|  | /** \returns the \c z coefficient */ | 
|  | inline Scalar z() const { return m_coeffs.coeff(2); } | 
|  | /** \returns the \c w coefficient */ | 
|  | inline Scalar w() const { return m_coeffs.coeff(3); } | 
|  |  | 
|  | /** \returns a reference to the \c x coefficient */ | 
|  | inline Scalar& x() { return m_coeffs.coeffRef(0); } | 
|  | /** \returns a reference to the \c y coefficient */ | 
|  | inline Scalar& y() { return m_coeffs.coeffRef(1); } | 
|  | /** \returns a reference to the \c z coefficient */ | 
|  | inline Scalar& z() { return m_coeffs.coeffRef(2); } | 
|  | /** \returns a reference to the \c w coefficient */ | 
|  | inline Scalar& w() { return m_coeffs.coeffRef(3); } | 
|  |  | 
|  | /** \returns a read-only vector expression of the imaginary part (x,y,z) */ | 
|  | inline const Block<const Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); } | 
|  |  | 
|  | /** \returns a vector expression of the imaginary part (x,y,z) */ | 
|  | inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); } | 
|  |  | 
|  | /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ | 
|  | inline const Coefficients& coeffs() const { return m_coeffs; } | 
|  |  | 
|  | /** \returns a vector expression of the coefficients (x,y,z,w) */ | 
|  | inline Coefficients& coeffs() { return m_coeffs; } | 
|  |  | 
|  | /** Default constructor leaving the quaternion uninitialized. */ | 
|  | inline Quaternion() {} | 
|  |  | 
|  | /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from | 
|  | * its four coefficients \a w, \a x, \a y and \a z. | 
|  | * | 
|  | * \warning Note the order of the arguments: the real \a w coefficient first, | 
|  | * while internally the coefficients are stored in the following order: | 
|  | * [\c x, \c y, \c z, \c w] | 
|  | */ | 
|  | inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) | 
|  | { m_coeffs << x, y, z, w; } | 
|  |  | 
|  | /** Copy constructor */ | 
|  | inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; } | 
|  |  | 
|  | /** Constructs and initializes a quaternion from the angle-axis \a aa */ | 
|  | explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } | 
|  |  | 
|  | /** Constructs and initializes a quaternion from either: | 
|  | *  - a rotation matrix expression, | 
|  | *  - a 4D vector expression representing quaternion coefficients. | 
|  | * \sa operator=(MatrixBase<Derived>) | 
|  | */ | 
|  | template<typename Derived> | 
|  | explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; } | 
|  |  | 
|  | Quaternion& operator=(const Quaternion& other); | 
|  | Quaternion& operator=(const AngleAxisType& aa); | 
|  | template<typename Derived> | 
|  | Quaternion& operator=(const MatrixBase<Derived>& m); | 
|  |  | 
|  | /** \returns a quaternion representing an identity rotation | 
|  | * \sa MatrixBase::Identity() | 
|  | */ | 
|  | inline static Quaternion Identity() { return Quaternion(1, 0, 0, 0); } | 
|  |  | 
|  | /** \sa Quaternion::Identity(), MatrixBase::setIdentity() | 
|  | */ | 
|  | inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; } | 
|  |  | 
|  | /** \returns the squared norm of the quaternion's coefficients | 
|  | * \sa Quaternion::norm(), MatrixBase::squaredNorm() | 
|  | */ | 
|  | inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); } | 
|  |  | 
|  | /** \returns the norm of the quaternion's coefficients | 
|  | * \sa Quaternion::squaredNorm(), MatrixBase::norm() | 
|  | */ | 
|  | inline Scalar norm() const { return m_coeffs.norm(); } | 
|  |  | 
|  | /** Normalizes the quaternion \c *this | 
|  | * \sa normalized(), MatrixBase::normalize() */ | 
|  | inline void normalize() { m_coeffs.normalize(); } | 
|  | /** \returns a normalized version of \c *this | 
|  | * \sa normalize(), MatrixBase::normalized() */ | 
|  | inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); } | 
|  |  | 
|  | /** \returns the dot product of \c *this and \a other | 
|  | * Geometrically speaking, the dot product of two unit quaternions | 
|  | * corresponds to the cosine of half the angle between the two rotations. | 
|  | * \sa angularDistance() | 
|  | */ | 
|  | inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); } | 
|  |  | 
|  | inline Scalar angularDistance(const Quaternion& other) const; | 
|  |  | 
|  | Matrix3 toRotationMatrix(void) const; | 
|  |  | 
|  | template<typename Derived1, typename Derived2> | 
|  | Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); | 
|  |  | 
|  | inline Quaternion operator* (const Quaternion& q) const; | 
|  | inline Quaternion& operator*= (const Quaternion& q); | 
|  |  | 
|  | Quaternion inverse(void) const; | 
|  | Quaternion conjugate(void) const; | 
|  |  | 
|  | Quaternion slerp(Scalar t, const Quaternion& other) const; | 
|  |  | 
|  | template<typename Derived> | 
|  | Vector3 operator* (const MatrixBase<Derived>& vec) const; | 
|  |  | 
|  | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|  | * | 
|  | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|  | * then this function smartly returns a const reference to \c *this. | 
|  | */ | 
|  | template<typename NewScalarType> | 
|  | inline typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const | 
|  | { return typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); } | 
|  |  | 
|  | /** Copy constructor with scalar type conversion */ | 
|  | template<typename OtherScalarType> | 
|  | inline explicit Quaternion(const Quaternion<OtherScalarType>& other) | 
|  | { m_coeffs = other.coeffs().template cast<Scalar>(); } | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \sa MatrixBase::isApprox() */ | 
|  | bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const | 
|  | { return m_coeffs.isApprox(other.m_coeffs, prec); } | 
|  |  | 
|  | protected: | 
|  | Coefficients m_coeffs; | 
|  | }; | 
|  |  | 
|  | /** \ingroup Geometry_Module | 
|  | * single precision quaternion type */ | 
|  | typedef Quaternion<float> Quaternionf; | 
|  | /** \ingroup Geometry_Module | 
|  | * double precision quaternion type */ | 
|  | typedef Quaternion<double> Quaterniond; | 
|  |  | 
|  | // Generic Quaternion * Quaternion product | 
|  | template<typename Scalar> inline Quaternion<Scalar> | 
|  | ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b) | 
|  | { | 
|  | return Quaternion<Scalar> | 
|  | ( | 
|  | a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), | 
|  | a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), | 
|  | a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), | 
|  | a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() | 
|  | ); | 
|  | } | 
|  |  | 
|  | /** \returns the concatenation of two rotations as a quaternion-quaternion product */ | 
|  | template <typename Scalar> | 
|  | inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const | 
|  | { | 
|  | return ei_quaternion_product(*this,other); | 
|  | } | 
|  |  | 
|  | /** \sa operator*(Quaternion) */ | 
|  | template <typename Scalar> | 
|  | inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other) | 
|  | { | 
|  | return (*this = *this * other); | 
|  | } | 
|  |  | 
|  | /** Rotation of a vector by a quaternion. | 
|  | * \remarks If the quaternion is used to rotate several points (>1) | 
|  | * then it is much more efficient to first convert it to a 3x3 Matrix. | 
|  | * Comparison of the operation cost for n transformations: | 
|  | *   - Quaternion:    30n | 
|  | *   - Via a Matrix3: 24 + 15n | 
|  | */ | 
|  | template <typename Scalar> | 
|  | template<typename Derived> | 
|  | inline typename Quaternion<Scalar>::Vector3 | 
|  | Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const | 
|  | { | 
|  | // Note that this algorithm comes from the optimization by hand | 
|  | // of the conversion to a Matrix followed by a Matrix/Vector product. | 
|  | // It appears to be much faster than the common algorithm found | 
|  | // in the litterature (30 versus 39 flops). It also requires two | 
|  | // Vector3 as temporaries. | 
|  | Vector3 uv; | 
|  | uv = 2 * this->vec().cross(v); | 
|  | return v + this->w() * uv + this->vec().cross(uv); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other) | 
|  | { | 
|  | m_coeffs = other.m_coeffs; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this | 
|  | */ | 
|  | template<typename Scalar> | 
|  | inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa) | 
|  | { | 
|  | Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings | 
|  | this->w() = ei_cos(ha); | 
|  | this->vec() = ei_sin(ha) * aa.axis(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Set \c *this from the expression \a xpr: | 
|  | *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion | 
|  | *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix | 
|  | *     and \a xpr is converted to a quaternion | 
|  | */ | 
|  | template<typename Scalar> | 
|  | template<typename Derived> | 
|  | inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr) | 
|  | { | 
|  | ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Convert the quaternion to a 3x3 rotation matrix */ | 
|  | template<typename Scalar> | 
|  | inline typename Quaternion<Scalar>::Matrix3 | 
|  | Quaternion<Scalar>::toRotationMatrix(void) const | 
|  | { | 
|  | // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) | 
|  | // if not inlined then the cost of the return by value is huge ~ +35%, | 
|  | // however, not inlining this function is an order of magnitude slower, so | 
|  | // it has to be inlined, and so the return by value is not an issue | 
|  | Matrix3 res; | 
|  |  | 
|  | const Scalar tx  = 2*this->x(); | 
|  | const Scalar ty  = 2*this->y(); | 
|  | const Scalar tz  = 2*this->z(); | 
|  | const Scalar twx = tx*this->w(); | 
|  | const Scalar twy = ty*this->w(); | 
|  | const Scalar twz = tz*this->w(); | 
|  | const Scalar txx = tx*this->x(); | 
|  | const Scalar txy = ty*this->x(); | 
|  | const Scalar txz = tz*this->x(); | 
|  | const Scalar tyy = ty*this->y(); | 
|  | const Scalar tyz = tz*this->y(); | 
|  | const Scalar tzz = tz*this->z(); | 
|  |  | 
|  | res.coeffRef(0,0) = 1-(tyy+tzz); | 
|  | res.coeffRef(0,1) = txy-twz; | 
|  | res.coeffRef(0,2) = txz+twy; | 
|  | res.coeffRef(1,0) = txy+twz; | 
|  | res.coeffRef(1,1) = 1-(txx+tzz); | 
|  | res.coeffRef(1,2) = tyz-twx; | 
|  | res.coeffRef(2,0) = txz-twy; | 
|  | res.coeffRef(2,1) = tyz+twx; | 
|  | res.coeffRef(2,2) = 1-(txx+tyy); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b. | 
|  | * | 
|  | * \returns a reference to *this. | 
|  | * | 
|  | * Note that the two input vectors do \b not have to be normalized. | 
|  | */ | 
|  | template<typename Scalar> | 
|  | template<typename Derived1, typename Derived2> | 
|  | inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) | 
|  | { | 
|  | Vector3 v0 = a.normalized(); | 
|  | Vector3 v1 = b.normalized(); | 
|  | Scalar c = v0.eigen2_dot(v1); | 
|  |  | 
|  | // if dot == 1, vectors are the same | 
|  | if (ei_isApprox(c,Scalar(1))) | 
|  | { | 
|  | // set to identity | 
|  | this->w() = 1; this->vec().setZero(); | 
|  | return *this; | 
|  | } | 
|  | // if dot == -1, vectors are opposites | 
|  | if (ei_isApprox(c,Scalar(-1))) | 
|  | { | 
|  | this->vec() = v0.unitOrthogonal(); | 
|  | this->w() = 0; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | Vector3 axis = v0.cross(v1); | 
|  | Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2)); | 
|  | Scalar invs = Scalar(1)/s; | 
|  | this->vec() = axis * invs; | 
|  | this->w() = s * Scalar(0.5); | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns the multiplicative inverse of \c *this | 
|  | * Note that in most cases, i.e., if you simply want the opposite rotation, | 
|  | * and/or the quaternion is normalized, then it is enough to use the conjugate. | 
|  | * | 
|  | * \sa Quaternion::conjugate() | 
|  | */ | 
|  | template <typename Scalar> | 
|  | inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const | 
|  | { | 
|  | // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ?? | 
|  | Scalar n2 = this->squaredNorm(); | 
|  | if (n2 > 0) | 
|  | return Quaternion(conjugate().coeffs() / n2); | 
|  | else | 
|  | { | 
|  | // return an invalid result to flag the error | 
|  | return Quaternion(Coefficients::Zero()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse | 
|  | * if the quaternion is normalized. | 
|  | * The conjugate of a quaternion represents the opposite rotation. | 
|  | * | 
|  | * \sa Quaternion::inverse() | 
|  | */ | 
|  | template <typename Scalar> | 
|  | inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const | 
|  | { | 
|  | return Quaternion(this->w(),-this->x(),-this->y(),-this->z()); | 
|  | } | 
|  |  | 
|  | /** \returns the angle (in radian) between two rotations | 
|  | * \sa eigen2_dot() | 
|  | */ | 
|  | template <typename Scalar> | 
|  | inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const | 
|  | { | 
|  | double d = ei_abs(this->eigen2_dot(other)); | 
|  | if (d>=1.0) | 
|  | return 0; | 
|  | return Scalar(2) * std::acos(d); | 
|  | } | 
|  |  | 
|  | /** \returns the spherical linear interpolation between the two quaternions | 
|  | * \c *this and \a other at the parameter \a t | 
|  | */ | 
|  | template <typename Scalar> | 
|  | Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const | 
|  | { | 
|  | static const Scalar one = Scalar(1) - machine_epsilon<Scalar>(); | 
|  | Scalar d = this->eigen2_dot(other); | 
|  | Scalar absD = ei_abs(d); | 
|  |  | 
|  | Scalar scale0; | 
|  | Scalar scale1; | 
|  |  | 
|  | if (absD>=one) | 
|  | { | 
|  | scale0 = Scalar(1) - t; | 
|  | scale1 = t; | 
|  | } | 
|  | else | 
|  | { | 
|  | // theta is the angle between the 2 quaternions | 
|  | Scalar theta = std::acos(absD); | 
|  | Scalar sinTheta = ei_sin(theta); | 
|  |  | 
|  | scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta; | 
|  | scale1 = ei_sin( ( t * theta) ) / sinTheta; | 
|  | if (d<0) | 
|  | scale1 = -scale1; | 
|  | } | 
|  |  | 
|  | return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); | 
|  | } | 
|  |  | 
|  | // set from a rotation matrix | 
|  | template<typename Other> | 
|  | struct ei_quaternion_assign_impl<Other,3,3> | 
|  | { | 
|  | typedef typename Other::Scalar Scalar; | 
|  | inline static void run(Quaternion<Scalar>& q, const Other& mat) | 
|  | { | 
|  | // This algorithm comes from  "Quaternion Calculus and Fast Animation", | 
|  | // Ken Shoemake, 1987 SIGGRAPH course notes | 
|  | Scalar t = mat.trace(); | 
|  | if (t > 0) | 
|  | { | 
|  | t = ei_sqrt(t + Scalar(1.0)); | 
|  | q.w() = Scalar(0.5)*t; | 
|  | t = Scalar(0.5)/t; | 
|  | q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; | 
|  | q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; | 
|  | q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; | 
|  | } | 
|  | else | 
|  | { | 
|  | int i = 0; | 
|  | if (mat.coeff(1,1) > mat.coeff(0,0)) | 
|  | i = 1; | 
|  | if (mat.coeff(2,2) > mat.coeff(i,i)) | 
|  | i = 2; | 
|  | int j = (i+1)%3; | 
|  | int k = (j+1)%3; | 
|  |  | 
|  | t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); | 
|  | q.coeffs().coeffRef(i) = Scalar(0.5) * t; | 
|  | t = Scalar(0.5)/t; | 
|  | q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; | 
|  | q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; | 
|  | q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | // set from a vector of coefficients assumed to be a quaternion | 
|  | template<typename Other> | 
|  | struct ei_quaternion_assign_impl<Other,4,1> | 
|  | { | 
|  | typedef typename Other::Scalar Scalar; | 
|  | inline static void run(Quaternion<Scalar>& q, const Other& vec) | 
|  | { | 
|  | q.coeffs() = vec; | 
|  | } | 
|  | }; |