|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. Eigen itself is part of the KDE project. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway | 
|  |  | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \class Scaling | 
|  | * | 
|  | * \brief Represents a possibly non uniform scaling transformation | 
|  | * | 
|  | * \param _Scalar the scalar type, i.e., the type of the coefficients. | 
|  | * \param _Dim the  dimension of the space, can be a compile time value or Dynamic | 
|  | * | 
|  | * \note This class is not aimed to be used to store a scaling transformation, | 
|  | * but rather to make easier the constructions and updates of Transform objects. | 
|  | * | 
|  | * \sa class Translation, class Transform | 
|  | */ | 
|  | template<typename _Scalar, int _Dim> | 
|  | class Scaling | 
|  | { | 
|  | public: | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim) | 
|  | /** dimension of the space */ | 
|  | enum { Dim = _Dim }; | 
|  | /** the scalar type of the coefficients */ | 
|  | typedef _Scalar Scalar; | 
|  | /** corresponding vector type */ | 
|  | typedef Matrix<Scalar,Dim,1> VectorType; | 
|  | /** corresponding linear transformation matrix type */ | 
|  | typedef Matrix<Scalar,Dim,Dim> LinearMatrixType; | 
|  | /** corresponding translation type */ | 
|  | typedef Translation<Scalar,Dim> TranslationType; | 
|  | /** corresponding affine transformation type */ | 
|  | typedef Transform<Scalar,Dim> TransformType; | 
|  |  | 
|  | protected: | 
|  |  | 
|  | VectorType m_coeffs; | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** Default constructor without initialization. */ | 
|  | Scaling() {} | 
|  | /** Constructs and initialize a uniform scaling transformation */ | 
|  | explicit inline Scaling(const Scalar& s) { m_coeffs.setConstant(s); } | 
|  | /** 2D only */ | 
|  | inline Scaling(const Scalar& sx, const Scalar& sy) | 
|  | { | 
|  | ei_assert(Dim==2); | 
|  | m_coeffs.x() = sx; | 
|  | m_coeffs.y() = sy; | 
|  | } | 
|  | /** 3D only */ | 
|  | inline Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) | 
|  | { | 
|  | ei_assert(Dim==3); | 
|  | m_coeffs.x() = sx; | 
|  | m_coeffs.y() = sy; | 
|  | m_coeffs.z() = sz; | 
|  | } | 
|  | /** Constructs and initialize the scaling transformation from a vector of scaling coefficients */ | 
|  | explicit inline Scaling(const VectorType& coeffs) : m_coeffs(coeffs) {} | 
|  |  | 
|  | const VectorType& coeffs() const { return m_coeffs; } | 
|  | VectorType& coeffs() { return m_coeffs; } | 
|  |  | 
|  | /** Concatenates two scaling */ | 
|  | inline Scaling operator* (const Scaling& other) const | 
|  | { return Scaling(coeffs().cwise() * other.coeffs()); } | 
|  |  | 
|  | /** Concatenates a scaling and a translation */ | 
|  | inline TransformType operator* (const TranslationType& t) const; | 
|  |  | 
|  | /** Concatenates a scaling and an affine transformation */ | 
|  | inline TransformType operator* (const TransformType& t) const; | 
|  |  | 
|  | /** Concatenates a scaling and a linear transformation matrix */ | 
|  | // TODO returns an expression | 
|  | inline LinearMatrixType operator* (const LinearMatrixType& other) const | 
|  | { return coeffs().asDiagonal() * other; } | 
|  |  | 
|  | /** Concatenates a linear transformation matrix and a scaling */ | 
|  | // TODO returns an expression | 
|  | friend inline LinearMatrixType operator* (const LinearMatrixType& other, const Scaling& s) | 
|  | { return other * s.coeffs().asDiagonal(); } | 
|  |  | 
|  | template<typename Derived> | 
|  | inline LinearMatrixType operator*(const RotationBase<Derived,Dim>& r) const | 
|  | { return *this * r.toRotationMatrix(); } | 
|  |  | 
|  | /** Applies scaling to vector */ | 
|  | inline VectorType operator* (const VectorType& other) const | 
|  | { return coeffs().asDiagonal() * other; } | 
|  |  | 
|  | /** \returns the inverse scaling */ | 
|  | inline Scaling inverse() const | 
|  | { return Scaling(coeffs().cwise().inverse()); } | 
|  |  | 
|  | inline Scaling& operator=(const Scaling& other) | 
|  | { | 
|  | m_coeffs = other.m_coeffs; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|  | * | 
|  | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|  | * then this function smartly returns a const reference to \c *this. | 
|  | */ | 
|  | template<typename NewScalarType> | 
|  | inline typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type cast() const | 
|  | { return typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type(*this); } | 
|  |  | 
|  | /** Copy constructor with scalar type conversion */ | 
|  | template<typename OtherScalarType> | 
|  | inline explicit Scaling(const Scaling<OtherScalarType,Dim>& other) | 
|  | { m_coeffs = other.coeffs().template cast<Scalar>(); } | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \sa MatrixBase::isApprox() */ | 
|  | bool isApprox(const Scaling& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const | 
|  | { return m_coeffs.isApprox(other.m_coeffs, prec); } | 
|  |  | 
|  | }; | 
|  |  | 
|  | /** \addtogroup Geometry_Module */ | 
|  | //@{ | 
|  | typedef Scaling<float, 2> Scaling2f; | 
|  | typedef Scaling<double,2> Scaling2d; | 
|  | typedef Scaling<float, 3> Scaling3f; | 
|  | typedef Scaling<double,3> Scaling3d; | 
|  | //@} | 
|  |  | 
|  | template<typename Scalar, int Dim> | 
|  | inline typename Scaling<Scalar,Dim>::TransformType | 
|  | Scaling<Scalar,Dim>::operator* (const TranslationType& t) const | 
|  | { | 
|  | TransformType res; | 
|  | res.matrix().setZero(); | 
|  | res.linear().diagonal() = coeffs(); | 
|  | res.translation() = m_coeffs.cwise() * t.vector(); | 
|  | res(Dim,Dim) = Scalar(1); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim> | 
|  | inline typename Scaling<Scalar,Dim>::TransformType | 
|  | Scaling<Scalar,Dim>::operator* (const TransformType& t) const | 
|  | { | 
|  | TransformType res = t; | 
|  | res.prescale(m_coeffs); | 
|  | return res; | 
|  | } |