|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. Eigen itself is part of the KDE project. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway | 
|  |  | 
|  |  | 
|  | // Note that we have to pass Dim and HDim because it is not allowed to use a template | 
|  | // parameter to define a template specialization. To be more precise, in the following | 
|  | // specializations, it is not allowed to use Dim+1 instead of HDim. | 
|  | template< typename Other, | 
|  | int Dim, | 
|  | int HDim, | 
|  | int OtherRows=Other::RowsAtCompileTime, | 
|  | int OtherCols=Other::ColsAtCompileTime> | 
|  | struct ei_transform_product_impl; | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \class Transform | 
|  | * | 
|  | * \brief Represents an homogeneous transformation in a N dimensional space | 
|  | * | 
|  | * \param _Scalar the scalar type, i.e., the type of the coefficients | 
|  | * \param _Dim the dimension of the space | 
|  | * | 
|  | * The homography is internally represented and stored as a (Dim+1)^2 matrix which | 
|  | * is available through the matrix() method. | 
|  | * | 
|  | * Conversion methods from/to Qt's QMatrix and QTransform are available if the | 
|  | * preprocessor token EIGEN_QT_SUPPORT is defined. | 
|  | * | 
|  | * \sa class Matrix, class Quaternion | 
|  | */ | 
|  | template<typename _Scalar, int _Dim> | 
|  | class Transform | 
|  | { | 
|  | public: | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) | 
|  | enum { | 
|  | Dim = _Dim,     ///< space dimension in which the transformation holds | 
|  | HDim = _Dim+1   ///< size of a respective homogeneous vector | 
|  | }; | 
|  | /** the scalar type of the coefficients */ | 
|  | typedef _Scalar Scalar; | 
|  | /** type of the matrix used to represent the transformation */ | 
|  | typedef Matrix<Scalar,HDim,HDim> MatrixType; | 
|  | /** type of the matrix used to represent the linear part of the transformation */ | 
|  | typedef Matrix<Scalar,Dim,Dim> LinearMatrixType; | 
|  | /** type of read/write reference to the linear part of the transformation */ | 
|  | typedef Block<MatrixType,Dim,Dim> LinearPart; | 
|  | /** type of read/write reference to the linear part of the transformation */ | 
|  | typedef const Block<const MatrixType,Dim,Dim> ConstLinearPart; | 
|  | /** type of a vector */ | 
|  | typedef Matrix<Scalar,Dim,1> VectorType; | 
|  | /** type of a read/write reference to the translation part of the rotation */ | 
|  | typedef Block<MatrixType,Dim,1> TranslationPart; | 
|  | /** type of a read/write reference to the translation part of the rotation */ | 
|  | typedef const Block<const MatrixType,Dim,1> ConstTranslationPart; | 
|  | /** corresponding translation type */ | 
|  | typedef Translation<Scalar,Dim> TranslationType; | 
|  | /** corresponding scaling transformation type */ | 
|  | typedef Scaling<Scalar,Dim> ScalingType; | 
|  |  | 
|  | protected: | 
|  |  | 
|  | MatrixType m_matrix; | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** Default constructor without initialization of the coefficients. */ | 
|  | inline Transform() { } | 
|  |  | 
|  | inline Transform(const Transform& other) | 
|  | { | 
|  | m_matrix = other.m_matrix; | 
|  | } | 
|  |  | 
|  | inline explicit Transform(const TranslationType& t) { *this = t; } | 
|  | inline explicit Transform(const ScalingType& s) { *this = s; } | 
|  | template<typename Derived> | 
|  | inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; } | 
|  |  | 
|  | inline Transform& operator=(const Transform& other) | 
|  | { m_matrix = other.m_matrix; return *this; } | 
|  |  | 
|  | template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value | 
|  | struct construct_from_matrix | 
|  | { | 
|  | static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other) | 
|  | { | 
|  | transform->matrix() = other; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true> | 
|  | { | 
|  | static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other) | 
|  | { | 
|  | transform->linear() = other; | 
|  | transform->translation().setZero(); | 
|  | transform->matrix()(Dim,Dim) = Scalar(1); | 
|  | transform->matrix().template block<1,Dim>(Dim,0).setZero(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ | 
|  | template<typename OtherDerived> | 
|  | inline explicit Transform(const MatrixBase<OtherDerived>& other) | 
|  | { | 
|  | construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other); | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a (Dim+1)^2 matrix. */ | 
|  | template<typename OtherDerived> | 
|  | inline Transform& operator=(const MatrixBase<OtherDerived>& other) | 
|  | { m_matrix = other; return *this; } | 
|  |  | 
|  | #ifdef EIGEN_QT_SUPPORT | 
|  | inline Transform(const QMatrix& other); | 
|  | inline Transform& operator=(const QMatrix& other); | 
|  | inline QMatrix toQMatrix(void) const; | 
|  | inline Transform(const QTransform& other); | 
|  | inline Transform& operator=(const QTransform& other); | 
|  | inline QTransform toQTransform(void) const; | 
|  | #endif | 
|  |  | 
|  | /** shortcut for m_matrix(row,col); | 
|  | * \sa MatrixBase::operaror(int,int) const */ | 
|  | inline Scalar operator() (int row, int col) const { return m_matrix(row,col); } | 
|  | /** shortcut for m_matrix(row,col); | 
|  | * \sa MatrixBase::operaror(int,int) */ | 
|  | inline Scalar& operator() (int row, int col) { return m_matrix(row,col); } | 
|  |  | 
|  | /** \returns a read-only expression of the transformation matrix */ | 
|  | inline const MatrixType& matrix() const { return m_matrix; } | 
|  | /** \returns a writable expression of the transformation matrix */ | 
|  | inline MatrixType& matrix() { return m_matrix; } | 
|  |  | 
|  | /** \returns a read-only expression of the linear (linear) part of the transformation */ | 
|  | inline ConstLinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); } | 
|  | /** \returns a writable expression of the linear (linear) part of the transformation */ | 
|  | inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); } | 
|  |  | 
|  | /** \returns a read-only expression of the translation vector of the transformation */ | 
|  | inline ConstTranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); } | 
|  | /** \returns a writable expression of the translation vector of the transformation */ | 
|  | inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); } | 
|  |  | 
|  | /** \returns an expression of the product between the transform \c *this and a matrix expression \a other | 
|  | * | 
|  | * The right hand side \a other might be either: | 
|  | * \li a vector of size Dim, | 
|  | * \li an homogeneous vector of size Dim+1, | 
|  | * \li a transformation matrix of size Dim+1 x Dim+1. | 
|  | */ | 
|  | // note: this function is defined here because some compilers cannot find the respective declaration | 
|  | template<typename OtherDerived> | 
|  | inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType | 
|  | operator * (const MatrixBase<OtherDerived> &other) const | 
|  | { return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); } | 
|  |  | 
|  | /** \returns the product expression of a transformation matrix \a a times a transform \a b | 
|  | * The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */ | 
|  | template<typename OtherDerived> | 
|  | friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type | 
|  | operator * (const MatrixBase<OtherDerived> &a, const Transform &b) | 
|  | { return a.derived() * b.matrix(); } | 
|  |  | 
|  | /** Contatenates two transformations */ | 
|  | inline const Transform | 
|  | operator * (const Transform& other) const | 
|  | { return Transform(m_matrix * other.matrix()); } | 
|  |  | 
|  | /** \sa MatrixBase::setIdentity() */ | 
|  | void setIdentity() { m_matrix.setIdentity(); } | 
|  | static const typename MatrixType::IdentityReturnType Identity() | 
|  | { | 
|  | return MatrixType::Identity(); | 
|  | } | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& scale(const MatrixBase<OtherDerived> &other); | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& prescale(const MatrixBase<OtherDerived> &other); | 
|  |  | 
|  | inline Transform& scale(Scalar s); | 
|  | inline Transform& prescale(Scalar s); | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& translate(const MatrixBase<OtherDerived> &other); | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& pretranslate(const MatrixBase<OtherDerived> &other); | 
|  |  | 
|  | template<typename RotationType> | 
|  | inline Transform& rotate(const RotationType& rotation); | 
|  |  | 
|  | template<typename RotationType> | 
|  | inline Transform& prerotate(const RotationType& rotation); | 
|  |  | 
|  | Transform& shear(Scalar sx, Scalar sy); | 
|  | Transform& preshear(Scalar sx, Scalar sy); | 
|  |  | 
|  | inline Transform& operator=(const TranslationType& t); | 
|  | inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } | 
|  | inline Transform operator*(const TranslationType& t) const; | 
|  |  | 
|  | inline Transform& operator=(const ScalingType& t); | 
|  | inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); } | 
|  | inline Transform operator*(const ScalingType& s) const; | 
|  | friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t) | 
|  | { | 
|  | Transform res = t; | 
|  | res.matrix().row(Dim) = t.matrix().row(Dim); | 
|  | res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy(); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template<typename Derived> | 
|  | inline Transform& operator=(const RotationBase<Derived,Dim>& r); | 
|  | template<typename Derived> | 
|  | inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); } | 
|  | template<typename Derived> | 
|  | inline Transform operator*(const RotationBase<Derived,Dim>& r) const; | 
|  |  | 
|  | LinearMatrixType rotation() const; | 
|  | template<typename RotationMatrixType, typename ScalingMatrixType> | 
|  | void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; | 
|  | template<typename ScalingMatrixType, typename RotationMatrixType> | 
|  | void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; | 
|  |  | 
|  | template<typename PositionDerived, typename OrientationType, typename ScaleDerived> | 
|  | Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, | 
|  | const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale); | 
|  |  | 
|  | inline const MatrixType inverse(TransformTraits traits = Affine) const; | 
|  |  | 
|  | /** \returns a const pointer to the column major internal matrix */ | 
|  | const Scalar* data() const { return m_matrix.data(); } | 
|  | /** \returns a non-const pointer to the column major internal matrix */ | 
|  | Scalar* data() { return m_matrix.data(); } | 
|  |  | 
|  | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|  | * | 
|  | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|  | * then this function smartly returns a const reference to \c *this. | 
|  | */ | 
|  | template<typename NewScalarType> | 
|  | inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const | 
|  | { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); } | 
|  |  | 
|  | /** Copy constructor with scalar type conversion */ | 
|  | template<typename OtherScalarType> | 
|  | inline explicit Transform(const Transform<OtherScalarType,Dim>& other) | 
|  | { m_matrix = other.matrix().template cast<Scalar>(); } | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \sa MatrixBase::isApprox() */ | 
|  | bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const | 
|  | { return m_matrix.isApprox(other.m_matrix, prec); } | 
|  |  | 
|  | #ifdef EIGEN_TRANSFORM_PLUGIN | 
|  | #include EIGEN_TRANSFORM_PLUGIN | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  |  | 
|  | }; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,2> Transform2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,3> Transform3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,2> Transform2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,3> Transform3d; | 
|  |  | 
|  | /************************** | 
|  | *** Optional QT support *** | 
|  | **************************/ | 
|  |  | 
|  | #ifdef EIGEN_QT_SUPPORT | 
|  | /** Initialises \c *this from a QMatrix assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | Transform<Scalar,Dim>::Transform(const QMatrix& other) | 
|  | { | 
|  | *this = other; | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a QMatrix assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | m_matrix << other.m11(), other.m21(), other.dx(), | 
|  | other.m12(), other.m22(), other.dy(), | 
|  | 0, 0, 1; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns a QMatrix from \c *this assuming the dimension is 2. | 
|  | * | 
|  | * \warning this convertion might loss data if \c *this is not affine | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | QMatrix Transform<Scalar,Dim>::toQMatrix(void) const | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), | 
|  | m_matrix.coeff(0,1), m_matrix.coeff(1,1), | 
|  | m_matrix.coeff(0,2), m_matrix.coeff(1,2)); | 
|  | } | 
|  |  | 
|  | /** Initialises \c *this from a QTransform assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | Transform<Scalar,Dim>::Transform(const QTransform& other) | 
|  | { | 
|  | *this = other; | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a QTransform assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | m_matrix << other.m11(), other.m21(), other.dx(), | 
|  | other.m12(), other.m22(), other.dy(), | 
|  | other.m13(), other.m23(), other.m33(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns a QTransform from \c *this assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | QTransform Transform<Scalar,Dim>::toQTransform(void) const | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0), | 
|  | m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1), | 
|  | m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /********************* | 
|  | *** Procedural API *** | 
|  | *********************/ | 
|  |  | 
|  | /** Applies on the right the non uniform scale transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \sa prescale() | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | template<typename OtherDerived> | 
|  | Transform<Scalar,Dim>& | 
|  | Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|  | linear() = (linear() * other.asDiagonal()).lazy(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right a uniform scale of a factor \a c to \c *this | 
|  | * and returns a reference to \c *this. | 
|  | * \sa prescale(Scalar) | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s) | 
|  | { | 
|  | linear() *= s; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the non uniform scale transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \sa scale() | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | template<typename OtherDerived> | 
|  | Transform<Scalar,Dim>& | 
|  | Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|  | m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left a uniform scale of a factor \a c to \c *this | 
|  | * and returns a reference to \c *this. | 
|  | * \sa scale(Scalar) | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s) | 
|  | { | 
|  | m_matrix.template corner<Dim,HDim>(TopLeft) *= s; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right the translation matrix represented by the vector \a other | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * \sa pretranslate() | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | template<typename OtherDerived> | 
|  | Transform<Scalar,Dim>& | 
|  | Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|  | translation() += linear() * other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the translation matrix represented by the vector \a other | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * \sa translate() | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | template<typename OtherDerived> | 
|  | Transform<Scalar,Dim>& | 
|  | Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|  | translation() += other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right the rotation represented by the rotation \a rotation | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * | 
|  | * The template parameter \a RotationType is the type of the rotation which | 
|  | * must be known by ei_toRotationMatrix<>. | 
|  | * | 
|  | * Natively supported types includes: | 
|  | *   - any scalar (2D), | 
|  | *   - a Dim x Dim matrix expression, | 
|  | *   - a Quaternion (3D), | 
|  | *   - a AngleAxis (3D) | 
|  | * | 
|  | * This mechanism is easily extendable to support user types such as Euler angles, | 
|  | * or a pair of Quaternion for 4D rotations. | 
|  | * | 
|  | * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | template<typename RotationType> | 
|  | Transform<Scalar,Dim>& | 
|  | Transform<Scalar,Dim>::rotate(const RotationType& rotation) | 
|  | { | 
|  | linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the rotation represented by the rotation \a rotation | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * | 
|  | * See rotate() for further details. | 
|  | * | 
|  | * \sa rotate() | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | template<typename RotationType> | 
|  | Transform<Scalar,Dim>& | 
|  | Transform<Scalar,Dim>::prerotate(const RotationType& rotation) | 
|  | { | 
|  | m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation) | 
|  | * m_matrix.template block<Dim,HDim>(0,0); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right the shear transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \warning 2D only. | 
|  | * \sa preshear() | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | Transform<Scalar,Dim>& | 
|  | Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | VectorType tmp = linear().col(0)*sy + linear().col(1); | 
|  | linear() << linear().col(0) + linear().col(1)*sx, tmp; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the shear transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \warning 2D only. | 
|  | * \sa shear() | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | Transform<Scalar,Dim>& | 
|  | Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /****************************************************** | 
|  | *** Scaling, Translation and Rotation compatibility *** | 
|  | ******************************************************/ | 
|  |  | 
|  | template<typename Scalar, int Dim> | 
|  | inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t) | 
|  | { | 
|  | linear().setIdentity(); | 
|  | translation() = t.vector(); | 
|  | m_matrix.template block<1,Dim>(Dim,0).setZero(); | 
|  | m_matrix(Dim,Dim) = Scalar(1); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim> | 
|  | inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const | 
|  | { | 
|  | Transform res = *this; | 
|  | res.translate(t.vector()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim> | 
|  | inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s) | 
|  | { | 
|  | m_matrix.setZero(); | 
|  | linear().diagonal() = s.coeffs(); | 
|  | m_matrix.coeffRef(Dim,Dim) = Scalar(1); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim> | 
|  | inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const | 
|  | { | 
|  | Transform res = *this; | 
|  | res.scale(s.coeffs()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim> | 
|  | template<typename Derived> | 
|  | inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r) | 
|  | { | 
|  | linear() = ei_toRotationMatrix<Scalar,Dim>(r); | 
|  | translation().setZero(); | 
|  | m_matrix.template block<1,Dim>(Dim,0).setZero(); | 
|  | m_matrix.coeffRef(Dim,Dim) = Scalar(1); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim> | 
|  | template<typename Derived> | 
|  | inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const | 
|  | { | 
|  | Transform res = *this; | 
|  | res.rotate(r.derived()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /************************ | 
|  | *** Special functions *** | 
|  | ************************/ | 
|  |  | 
|  | /** \returns the rotation part of the transformation | 
|  | * \nonstableyet | 
|  | * | 
|  | * \svd_module | 
|  | * | 
|  | * \sa computeRotationScaling(), computeScalingRotation(), class SVD | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | typename Transform<Scalar,Dim>::LinearMatrixType | 
|  | Transform<Scalar,Dim>::rotation() const | 
|  | { | 
|  | LinearMatrixType result; | 
|  | computeRotationScaling(&result, (LinearMatrixType*)0); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being | 
|  | * not necessarily positive. | 
|  | * | 
|  | * If either pointer is zero, the corresponding computation is skipped. | 
|  | * | 
|  | * \nonstableyet | 
|  | * | 
|  | * \svd_module | 
|  | * | 
|  | * \sa computeScalingRotation(), rotation(), class SVD | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | template<typename RotationMatrixType, typename ScalingMatrixType> | 
|  | void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const | 
|  | { | 
|  | JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV); | 
|  | Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 | 
|  | Matrix<Scalar, Dim, 1> sv(svd.singularValues()); | 
|  | sv.coeffRef(0) *= x; | 
|  | if(scaling) | 
|  | { | 
|  | scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint(); | 
|  | } | 
|  | if(rotation) | 
|  | { | 
|  | LinearMatrixType m(svd.matrixU()); | 
|  | m.col(0) /= x; | 
|  | rotation->noalias() = m * svd.matrixV().adjoint(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being | 
|  | * not necessarily positive. | 
|  | * | 
|  | * If either pointer is zero, the corresponding computation is skipped. | 
|  | * | 
|  | * \nonstableyet | 
|  | * | 
|  | * \svd_module | 
|  | * | 
|  | * \sa computeRotationScaling(), rotation(), class SVD | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | template<typename ScalingMatrixType, typename RotationMatrixType> | 
|  | void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const | 
|  | { | 
|  | JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV); | 
|  | Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 | 
|  | Matrix<Scalar, Dim, 1> sv(svd.singularValues()); | 
|  | sv.coeffRef(0) *= x; | 
|  | if(scaling) | 
|  | { | 
|  | scaling->noalias() = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint(); | 
|  | } | 
|  | if(rotation) | 
|  | { | 
|  | LinearMatrixType m(svd.matrixU()); | 
|  | m.col(0) /= x; | 
|  | rotation->noalias() = m * svd.matrixV().adjoint(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** Convenient method to set \c *this from a position, orientation and scale | 
|  | * of a 3D object. | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | template<typename PositionDerived, typename OrientationType, typename ScaleDerived> | 
|  | Transform<Scalar,Dim>& | 
|  | Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, | 
|  | const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale) | 
|  | { | 
|  | linear() = ei_toRotationMatrix<Scalar,Dim>(orientation); | 
|  | linear() *= scale.asDiagonal(); | 
|  | translation() = position; | 
|  | m_matrix.template block<1,Dim>(Dim,0).setZero(); | 
|  | m_matrix(Dim,Dim) = Scalar(1); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \nonstableyet | 
|  | * | 
|  | * \returns the inverse transformation matrix according to some given knowledge | 
|  | * on \c *this. | 
|  | * | 
|  | * \param traits allows to optimize the inversion process when the transformion | 
|  | * is known to be not a general transformation. The possible values are: | 
|  | *  - Projective if the transformation is not necessarily affine, i.e., if the | 
|  | *    last row is not guaranteed to be [0 ... 0 1] | 
|  | *  - Affine is the default, the last row is assumed to be [0 ... 0 1] | 
|  | *  - Isometry if the transformation is only a concatenations of translations | 
|  | *    and rotations. | 
|  | * | 
|  | * \warning unless \a traits is always set to NoShear or NoScaling, this function | 
|  | * requires the generic inverse method of MatrixBase defined in the LU module. If | 
|  | * you forget to include this module, then you will get hard to debug linking errors. | 
|  | * | 
|  | * \sa MatrixBase::inverse() | 
|  | */ | 
|  | template<typename Scalar, int Dim> | 
|  | inline const typename Transform<Scalar,Dim>::MatrixType | 
|  | Transform<Scalar,Dim>::inverse(TransformTraits traits) const | 
|  | { | 
|  | if (traits == Projective) | 
|  | { | 
|  | return m_matrix.inverse(); | 
|  | } | 
|  | else | 
|  | { | 
|  | MatrixType res; | 
|  | if (traits == Affine) | 
|  | { | 
|  | res.template corner<Dim,Dim>(TopLeft) = linear().inverse(); | 
|  | } | 
|  | else if (traits == Isometry) | 
|  | { | 
|  | res.template corner<Dim,Dim>(TopLeft) = linear().transpose(); | 
|  | } | 
|  | else | 
|  | { | 
|  | ei_assert("invalid traits value in Transform::inverse()"); | 
|  | } | 
|  | // translation and remaining parts | 
|  | res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation(); | 
|  | res.template corner<1,Dim>(BottomLeft).setZero(); | 
|  | res.coeffRef(Dim,Dim) = Scalar(1); | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | /***************************************************** | 
|  | *** Specializations of operator* with a MatrixBase *** | 
|  | *****************************************************/ | 
|  |  | 
|  | template<typename Other, int Dim, int HDim> | 
|  | struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef typename ProductReturnType<MatrixType,Other>::Type ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { return tr.matrix() * other; } | 
|  | }; | 
|  |  | 
|  | template<typename Other, int Dim, int HDim> | 
|  | struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef TransformType ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { | 
|  | TransformType res; | 
|  | res.translation() = tr.translation(); | 
|  | res.matrix().row(Dim) = tr.matrix().row(Dim); | 
|  | res.linear() = (tr.linear() * other).lazy(); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Other, int Dim, int HDim> | 
|  | struct ei_transform_product_impl<Other,Dim,HDim, HDim,1> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef typename ProductReturnType<MatrixType,Other>::Type ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { return tr.matrix() * other; } | 
|  | }; | 
|  |  | 
|  | template<typename Other, int Dim, int HDim> | 
|  | struct ei_transform_product_impl<Other,Dim,HDim, Dim,1> | 
|  | { | 
|  | typedef typename Other::Scalar Scalar; | 
|  | typedef Transform<Scalar,Dim> TransformType; | 
|  | typedef Matrix<Scalar,Dim,1> ResultType; | 
|  | static ResultType run(const TransformType& tr, const Other& other) | 
|  | { return ((tr.linear() * other) + tr.translation()) | 
|  | * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); } | 
|  | }; |