| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #ifndef EIGEN_REAL_SCHUR_H | 
 | #define EIGEN_REAL_SCHUR_H | 
 |  | 
 | #include "./EigenvaluesCommon.h" | 
 | #include "./HessenbergDecomposition.h" | 
 |  | 
 | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
 |   * | 
 |   * | 
 |   * \class RealSchur | 
 |   * | 
 |   * \brief Performs a real Schur decomposition of a square matrix | 
 |   * | 
 |   * \tparam _MatrixType the type of the matrix of which we are computing the | 
 |   * real Schur decomposition; this is expected to be an instantiation of the | 
 |   * Matrix class template. | 
 |   * | 
 |   * Given a real square matrix A, this class computes the real Schur | 
 |   * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and | 
 |   * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose | 
 |   * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular | 
 |   * matrix is a block-triangular matrix whose diagonal consists of 1-by-1 | 
 |   * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the | 
 |   * blocks on the diagonal of T are the same as the eigenvalues of the matrix | 
 |   * A, and thus the real Schur decomposition is used in EigenSolver to compute | 
 |   * the eigendecomposition of a matrix. | 
 |   * | 
 |   * Call the function compute() to compute the real Schur decomposition of a | 
 |   * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool) | 
 |   * constructor which computes the real Schur decomposition at construction | 
 |   * time. Once the decomposition is computed, you can use the matrixU() and | 
 |   * matrixT() functions to retrieve the matrices U and T in the decomposition. | 
 |   * | 
 |   * The documentation of RealSchur(const MatrixType&, bool) contains an example | 
 |   * of the typical use of this class. | 
 |   * | 
 |   * \note The implementation is adapted from | 
 |   * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain). | 
 |   * Their code is based on EISPACK. | 
 |   * | 
 |   * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver | 
 |   */ | 
 | template<typename _MatrixType> class RealSchur | 
 | { | 
 |   public: | 
 |     typedef _MatrixType MatrixType; | 
 |     enum { | 
 |       RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |       ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |       Options = MatrixType::Options, | 
 |       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
 |       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |     }; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; | 
 |     typedef typename MatrixType::Index Index; | 
 |  | 
 |     typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; | 
 |     typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; | 
 |  | 
 |     /** \brief Default constructor. | 
 |       * | 
 |       * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed. | 
 |       * | 
 |       * The default constructor is useful in cases in which the user intends to | 
 |       * perform decompositions via compute().  The \p size parameter is only | 
 |       * used as a hint. It is not an error to give a wrong \p size, but it may | 
 |       * impair performance. | 
 |       * | 
 |       * \sa compute() for an example. | 
 |       */ | 
 |     RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) | 
 |             : m_matT(size, size), | 
 |               m_matU(size, size), | 
 |               m_workspaceVector(size), | 
 |               m_hess(size), | 
 |               m_isInitialized(false), | 
 |               m_matUisUptodate(false) | 
 |     { } | 
 |  | 
 |     /** \brief Constructor; computes real Schur decomposition of given matrix.  | 
 |       *  | 
 |       * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed. | 
 |       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed. | 
 |       * | 
 |       * This constructor calls compute() to compute the Schur decomposition. | 
 |       * | 
 |       * Example: \include RealSchur_RealSchur_MatrixType.cpp | 
 |       * Output: \verbinclude RealSchur_RealSchur_MatrixType.out | 
 |       */ | 
 |     RealSchur(const MatrixType& matrix, bool computeU = true) | 
 |             : m_matT(matrix.rows(),matrix.cols()), | 
 |               m_matU(matrix.rows(),matrix.cols()), | 
 |               m_workspaceVector(matrix.rows()), | 
 |               m_hess(matrix.rows()), | 
 |               m_isInitialized(false), | 
 |               m_matUisUptodate(false) | 
 |     { | 
 |       compute(matrix, computeU); | 
 |     } | 
 |  | 
 |     /** \brief Returns the orthogonal matrix in the Schur decomposition.  | 
 |       * | 
 |       * \returns A const reference to the matrix U. | 
 |       * | 
 |       * \pre Either the constructor RealSchur(const MatrixType&, bool) or the | 
 |       * member function compute(const MatrixType&, bool) has been called before | 
 |       * to compute the Schur decomposition of a matrix, and \p computeU was set | 
 |       * to true (the default value). | 
 |       * | 
 |       * \sa RealSchur(const MatrixType&, bool) for an example | 
 |       */ | 
 |     const MatrixType& matrixU() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "RealSchur is not initialized."); | 
 |       eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition."); | 
 |       return m_matU; | 
 |     } | 
 |  | 
 |     /** \brief Returns the quasi-triangular matrix in the Schur decomposition.  | 
 |       * | 
 |       * \returns A const reference to the matrix T. | 
 |       * | 
 |       * \pre Either the constructor RealSchur(const MatrixType&, bool) or the | 
 |       * member function compute(const MatrixType&, bool) has been called before | 
 |       * to compute the Schur decomposition of a matrix. | 
 |       * | 
 |       * \sa RealSchur(const MatrixType&, bool) for an example | 
 |       */ | 
 |     const MatrixType& matrixT() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "RealSchur is not initialized."); | 
 |       return m_matT; | 
 |     } | 
 |    | 
 |     /** \brief Computes Schur decomposition of given matrix.  | 
 |       *  | 
 |       * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed. | 
 |       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed. | 
 |       * \returns    Reference to \c *this | 
 |       * | 
 |       * The Schur decomposition is computed by first reducing the matrix to | 
 |       * Hessenberg form using the class HessenbergDecomposition. The Hessenberg | 
 |       * matrix is then reduced to triangular form by performing Francis QR | 
 |       * iterations with implicit double shift. The cost of computing the Schur | 
 |       * decomposition depends on the number of iterations; as a rough guide, it | 
 |       * may be taken to be \f$25n^3\f$ flops if \a computeU is true and | 
 |       * \f$10n^3\f$ flops if \a computeU is false. | 
 |       * | 
 |       * Example: \include RealSchur_compute.cpp | 
 |       * Output: \verbinclude RealSchur_compute.out | 
 |       */ | 
 |     RealSchur& compute(const MatrixType& matrix, bool computeU = true); | 
 |  | 
 |     /** \brief Reports whether previous computation was successful. | 
 |       * | 
 |       * \returns \c Success if computation was succesful, \c NoConvergence otherwise. | 
 |       */ | 
 |     ComputationInfo info() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "RealSchur is not initialized."); | 
 |       return m_info; | 
 |     } | 
 |  | 
 |     /** \brief Maximum number of iterations. | 
 |       * | 
 |       * Maximum number of iterations allowed for an eigenvalue to converge.  | 
 |       */ | 
 |     static const int m_maxIterations = 40; | 
 |  | 
 |   private: | 
 |      | 
 |     MatrixType m_matT; | 
 |     MatrixType m_matU; | 
 |     ColumnVectorType m_workspaceVector; | 
 |     HessenbergDecomposition<MatrixType> m_hess; | 
 |     ComputationInfo m_info; | 
 |     bool m_isInitialized; | 
 |     bool m_matUisUptodate; | 
 |  | 
 |     typedef Matrix<Scalar,3,1> Vector3s; | 
 |  | 
 |     Scalar computeNormOfT(); | 
 |     Index findSmallSubdiagEntry(Index iu, Scalar norm); | 
 |     void splitOffTwoRows(Index iu, bool computeU, Scalar exshift); | 
 |     void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo); | 
 |     void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector); | 
 |     void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace); | 
 | }; | 
 |  | 
 |  | 
 | template<typename MatrixType> | 
 | RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU) | 
 | { | 
 |   assert(matrix.cols() == matrix.rows()); | 
 |  | 
 |   // Step 1. Reduce to Hessenberg form | 
 |   m_hess.compute(matrix); | 
 |   m_matT = m_hess.matrixH(); | 
 |   if (computeU) | 
 |     m_matU = m_hess.matrixQ(); | 
 |  | 
 |   // Step 2. Reduce to real Schur form   | 
 |   m_workspaceVector.resize(m_matT.cols()); | 
 |   Scalar* workspace = &m_workspaceVector.coeffRef(0); | 
 |  | 
 |   // The matrix m_matT is divided in three parts.  | 
 |   // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.  | 
 |   // Rows il,...,iu is the part we are working on (the active window). | 
 |   // Rows iu+1,...,end are already brought in triangular form. | 
 |   Index iu = m_matT.cols() - 1; | 
 |   Index iter = 0; // iteration count | 
 |   Scalar exshift = 0.0; // sum of exceptional shifts | 
 |   Scalar norm = computeNormOfT(); | 
 |  | 
 |   while (iu >= 0) | 
 |   { | 
 |     Index il = findSmallSubdiagEntry(iu, norm); | 
 |  | 
 |     // Check for convergence | 
 |     if (il == iu) // One root found | 
 |     { | 
 |       m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift; | 
 |       if (iu > 0)  | 
 |         m_matT.coeffRef(iu, iu-1) = Scalar(0); | 
 |       iu--; | 
 |       iter = 0; | 
 |     } | 
 |     else if (il == iu-1) // Two roots found | 
 |     { | 
 |       splitOffTwoRows(iu, computeU, exshift); | 
 |       iu -= 2; | 
 |       iter = 0; | 
 |     } | 
 |     else // No convergence yet | 
 |     { | 
 |       // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG ) | 
 |       Vector3s firstHouseholderVector(0,0,0), shiftInfo; | 
 |       computeShift(iu, iter, exshift, shiftInfo); | 
 |       iter = iter + 1;  | 
 |       if (iter > m_maxIterations) break; | 
 |       Index im; | 
 |       initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector); | 
 |       performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace); | 
 |     } | 
 |   }  | 
 |  | 
 |   if(iter <= m_maxIterations)  | 
 |     m_info = Success; | 
 |   else | 
 |     m_info = NoConvergence; | 
 |  | 
 |   m_isInitialized = true; | 
 |   m_matUisUptodate = computeU; | 
 |   return *this; | 
 | } | 
 |  | 
 | /** \internal Computes and returns vector L1 norm of T */ | 
 | template<typename MatrixType> | 
 | inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT() | 
 | { | 
 |   const Index size = m_matT.cols(); | 
 |   // FIXME to be efficient the following would requires a triangular reduxion code | 
 |   // Scalar norm = m_matT.upper().cwiseAbs().sum()  | 
 |   //               + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum(); | 
 |   Scalar norm = 0.0; | 
 |   for (Index j = 0; j < size; ++j) | 
 |     norm += m_matT.row(j).segment(std::max(j-1,Index(0)), size-std::max(j-1,Index(0))).cwiseAbs().sum(); | 
 |   return norm; | 
 | } | 
 |  | 
 | /** \internal Look for single small sub-diagonal element and returns its index */ | 
 | template<typename MatrixType> | 
 | inline typename MatrixType::Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, Scalar norm) | 
 | { | 
 |   Index res = iu; | 
 |   while (res > 0) | 
 |   { | 
 |     Scalar s = internal::abs(m_matT.coeff(res-1,res-1)) + internal::abs(m_matT.coeff(res,res)); | 
 |     if (s == 0.0) | 
 |       s = norm; | 
 |     if (internal::abs(m_matT.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s) | 
 |       break; | 
 |     res--; | 
 |   } | 
 |   return res; | 
 | } | 
 |  | 
 | /** \internal Update T given that rows iu-1 and iu decouple from the rest. */ | 
 | template<typename MatrixType> | 
 | inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, Scalar exshift) | 
 | { | 
 |   const Index size = m_matT.cols(); | 
 |  | 
 |   // The eigenvalues of the 2x2 matrix [a b; c d] are  | 
 |   // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc | 
 |   Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu)); | 
 |   Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);   // q = tr^2 / 4 - det = discr/4 | 
 |   m_matT.coeffRef(iu,iu) += exshift; | 
 |   m_matT.coeffRef(iu-1,iu-1) += exshift; | 
 |  | 
 |   if (q >= 0) // Two real eigenvalues | 
 |   { | 
 |     Scalar z = internal::sqrt(internal::abs(q)); | 
 |     JacobiRotation<Scalar> rot; | 
 |     if (p >= 0) | 
 |       rot.makeGivens(p + z, m_matT.coeff(iu, iu-1)); | 
 |     else | 
 |       rot.makeGivens(p - z, m_matT.coeff(iu, iu-1)); | 
 |  | 
 |     m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint()); | 
 |     m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot); | 
 |     m_matT.coeffRef(iu, iu-1) = Scalar(0);  | 
 |     if (computeU) | 
 |       m_matU.applyOnTheRight(iu-1, iu, rot); | 
 |   } | 
 |  | 
 |   if (iu > 1)  | 
 |     m_matT.coeffRef(iu-1, iu-2) = Scalar(0); | 
 | } | 
 |  | 
 | /** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */ | 
 | template<typename MatrixType> | 
 | inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo) | 
 | { | 
 |   shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu); | 
 |   shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1); | 
 |   shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); | 
 |  | 
 |   // Wilkinson's original ad hoc shift | 
 |   if (iter == 10) | 
 |   { | 
 |     exshift += shiftInfo.coeff(0); | 
 |     for (Index i = 0; i <= iu; ++i) | 
 |       m_matT.coeffRef(i,i) -= shiftInfo.coeff(0); | 
 |     Scalar s = internal::abs(m_matT.coeff(iu,iu-1)) + internal::abs(m_matT.coeff(iu-1,iu-2)); | 
 |     shiftInfo.coeffRef(0) = Scalar(0.75) * s; | 
 |     shiftInfo.coeffRef(1) = Scalar(0.75) * s; | 
 |     shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s; | 
 |   } | 
 |  | 
 |   // MATLAB's new ad hoc shift | 
 |   if (iter == 30) | 
 |   { | 
 |     Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); | 
 |     s = s * s + shiftInfo.coeff(2); | 
 |     if (s > 0) | 
 |     { | 
 |       s = internal::sqrt(s); | 
 |       if (shiftInfo.coeff(1) < shiftInfo.coeff(0)) | 
 |         s = -s; | 
 |       s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); | 
 |       s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s; | 
 |       exshift += s; | 
 |       for (Index i = 0; i <= iu; ++i) | 
 |         m_matT.coeffRef(i,i) -= s; | 
 |       shiftInfo.setConstant(Scalar(0.964)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /** \internal Compute index im at which Francis QR step starts and the first Householder vector. */ | 
 | template<typename MatrixType> | 
 | inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector) | 
 | { | 
 |   Vector3s& v = firstHouseholderVector; // alias to save typing | 
 |  | 
 |   for (im = iu-2; im >= il; --im) | 
 |   { | 
 |     const Scalar Tmm = m_matT.coeff(im,im); | 
 |     const Scalar r = shiftInfo.coeff(0) - Tmm; | 
 |     const Scalar s = shiftInfo.coeff(1) - Tmm; | 
 |     v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1); | 
 |     v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s; | 
 |     v.coeffRef(2) = m_matT.coeff(im+2,im+1); | 
 |     if (im == il) { | 
 |       break; | 
 |     } | 
 |     const Scalar lhs = m_matT.coeff(im,im-1) * (internal::abs(v.coeff(1)) + internal::abs(v.coeff(2))); | 
 |     const Scalar rhs = v.coeff(0) * (internal::abs(m_matT.coeff(im-1,im-1)) + internal::abs(Tmm) + internal::abs(m_matT.coeff(im+1,im+1))); | 
 |     if (internal::abs(lhs) < NumTraits<Scalar>::epsilon() * rhs) | 
 |     { | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */ | 
 | template<typename MatrixType> | 
 | inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace) | 
 | { | 
 |   assert(im >= il); | 
 |   assert(im <= iu-2); | 
 |  | 
 |   const Index size = m_matT.cols(); | 
 |  | 
 |   for (Index k = im; k <= iu-2; ++k) | 
 |   { | 
 |     bool firstIteration = (k == im); | 
 |  | 
 |     Vector3s v; | 
 |     if (firstIteration) | 
 |       v = firstHouseholderVector; | 
 |     else | 
 |       v = m_matT.template block<3,1>(k,k-1); | 
 |  | 
 |     Scalar tau, beta; | 
 |     Matrix<Scalar, 2, 1> ess; | 
 |     v.makeHouseholder(ess, tau, beta); | 
 |      | 
 |     if (beta != Scalar(0)) // if v is not zero | 
 |     { | 
 |       if (firstIteration && k > il) | 
 |         m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1); | 
 |       else if (!firstIteration) | 
 |         m_matT.coeffRef(k,k-1) = beta; | 
 |  | 
 |       // These Householder transformations form the O(n^3) part of the algorithm | 
 |       m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace); | 
 |       m_matT.block(0, k, std::min(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace); | 
 |       if (computeU) | 
 |         m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace); | 
 |     } | 
 |   } | 
 |  | 
 |   Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2); | 
 |   Scalar tau, beta; | 
 |   Matrix<Scalar, 1, 1> ess; | 
 |   v.makeHouseholder(ess, tau, beta); | 
 |  | 
 |   if (beta != Scalar(0)) // if v is not zero | 
 |   { | 
 |     m_matT.coeffRef(iu-1, iu-2) = beta; | 
 |     m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace); | 
 |     m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace); | 
 |     if (computeU) | 
 |       m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace); | 
 |   } | 
 |  | 
 |   // clean up pollution due to round-off errors | 
 |   for (Index i = im+2; i <= iu; ++i) | 
 |   { | 
 |     m_matT.coeffRef(i,i-2) = Scalar(0); | 
 |     if (i > im+2) | 
 |       m_matT.coeffRef(i,i-3) = Scalar(0); | 
 |   } | 
 | } | 
 |  | 
 | #endif // EIGEN_REAL_SCHUR_H |