| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #ifndef EIGEN_PARTIALLU_H | 
 | #define EIGEN_PARTIALLU_H | 
 |  | 
 | /** \ingroup LU_Module | 
 |   * | 
 |   * \class PartialPivLU | 
 |   * | 
 |   * \brief LU decomposition of a matrix with partial pivoting, and related features | 
 |   * | 
 |   * \param MatrixType the type of the matrix of which we are computing the LU decomposition | 
 |   * | 
 |   * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A | 
 |   * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P | 
 |   * is a permutation matrix. | 
 |   * | 
 |   * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible | 
 |   * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class | 
 |   * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the | 
 |   * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. | 
 |   * | 
 |   * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided | 
 |   * by class FullPivLU. | 
 |   * | 
 |   * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, | 
 |   * such as rank computation. If you need these features, use class FullPivLU. | 
 |   * | 
 |   * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses | 
 |   * in the general case. | 
 |   * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. | 
 |   * | 
 |   * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). | 
 |   * | 
 |   * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU | 
 |   */ | 
 | template<typename _MatrixType> class PartialPivLU | 
 | { | 
 |   public: | 
 |  | 
 |     typedef _MatrixType MatrixType; | 
 |     enum { | 
 |       RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |       ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |       Options = MatrixType::Options, | 
 |       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
 |       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |     }; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
 |     typedef typename internal::traits<MatrixType>::StorageKind StorageKind; | 
 |     typedef typename MatrixType::Index Index; | 
 |     typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; | 
 |     typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; | 
 |  | 
 |  | 
 |     /** | 
 |     * \brief Default Constructor. | 
 |     * | 
 |     * The default constructor is useful in cases in which the user intends to | 
 |     * perform decompositions via PartialPivLU::compute(const MatrixType&). | 
 |     */ | 
 |     PartialPivLU(); | 
 |  | 
 |     /** \brief Default Constructor with memory preallocation | 
 |       * | 
 |       * Like the default constructor but with preallocation of the internal data | 
 |       * according to the specified problem \a size. | 
 |       * \sa PartialPivLU() | 
 |       */ | 
 |     PartialPivLU(Index size); | 
 |  | 
 |     /** Constructor. | 
 |       * | 
 |       * \param matrix the matrix of which to compute the LU decomposition. | 
 |       * | 
 |       * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). | 
 |       * If you need to deal with non-full rank, use class FullPivLU instead. | 
 |       */ | 
 |     PartialPivLU(const MatrixType& matrix); | 
 |  | 
 |     PartialPivLU& compute(const MatrixType& matrix); | 
 |  | 
 |     /** \returns the LU decomposition matrix: the upper-triangular part is U, the | 
 |       * unit-lower-triangular part is L (at least for square matrices; in the non-square | 
 |       * case, special care is needed, see the documentation of class FullPivLU). | 
 |       * | 
 |       * \sa matrixL(), matrixU() | 
 |       */ | 
 |     inline const MatrixType& matrixLU() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
 |       return m_lu; | 
 |     } | 
 |  | 
 |     /** \returns the permutation matrix P. | 
 |       */ | 
 |     inline const PermutationType& permutationP() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
 |       return m_p; | 
 |     } | 
 |  | 
 |     /** This method returns the solution x to the equation Ax=b, where A is the matrix of which | 
 |       * *this is the LU decomposition. | 
 |       * | 
 |       * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, | 
 |       *          the only requirement in order for the equation to make sense is that | 
 |       *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. | 
 |       * | 
 |       * \returns the solution. | 
 |       * | 
 |       * Example: \include PartialPivLU_solve.cpp | 
 |       * Output: \verbinclude PartialPivLU_solve.out | 
 |       * | 
 |       * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution | 
 |       * theoretically exists and is unique regardless of b. | 
 |       * | 
 |       * \sa TriangularView::solve(), inverse(), computeInverse() | 
 |       */ | 
 |     template<typename Rhs> | 
 |     inline const internal::solve_retval<PartialPivLU, Rhs> | 
 |     solve(const MatrixBase<Rhs>& b) const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
 |       return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived()); | 
 |     } | 
 |  | 
 |     /** \returns the inverse of the matrix of which *this is the LU decomposition. | 
 |       * | 
 |       * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for | 
 |       *          invertibility, use class FullPivLU instead. | 
 |       * | 
 |       * \sa MatrixBase::inverse(), LU::inverse() | 
 |       */ | 
 |     inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
 |       return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> | 
 |                (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols())); | 
 |     } | 
 |  | 
 |     /** \returns the determinant of the matrix of which | 
 |       * *this is the LU decomposition. It has only linear complexity | 
 |       * (that is, O(n) where n is the dimension of the square matrix) | 
 |       * as the LU decomposition has already been computed. | 
 |       * | 
 |       * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers | 
 |       *       optimized paths. | 
 |       * | 
 |       * \warning a determinant can be very big or small, so for matrices | 
 |       * of large enough dimension, there is a risk of overflow/underflow. | 
 |       * | 
 |       * \sa MatrixBase::determinant() | 
 |       */ | 
 |     typename internal::traits<MatrixType>::Scalar determinant() const; | 
 |  | 
 |     MatrixType reconstructedMatrix() const; | 
 |  | 
 |     inline Index rows() const { return m_lu.rows(); } | 
 |     inline Index cols() const { return m_lu.cols(); } | 
 |  | 
 |   protected: | 
 |     MatrixType m_lu; | 
 |     PermutationType m_p; | 
 |     TranspositionType m_rowsTranspositions; | 
 |     Index m_det_p; | 
 |     bool m_isInitialized; | 
 | }; | 
 |  | 
 | template<typename MatrixType> | 
 | PartialPivLU<MatrixType>::PartialPivLU() | 
 |   : m_lu(), | 
 |     m_p(), | 
 |     m_rowsTranspositions(), | 
 |     m_det_p(0), | 
 |     m_isInitialized(false) | 
 | { | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | PartialPivLU<MatrixType>::PartialPivLU(Index size) | 
 |   : m_lu(size, size), | 
 |     m_p(size), | 
 |     m_rowsTranspositions(size), | 
 |     m_det_p(0), | 
 |     m_isInitialized(false) | 
 | { | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix) | 
 |   : m_lu(matrix.rows(), matrix.rows()), | 
 |     m_p(matrix.rows()), | 
 |     m_rowsTranspositions(matrix.rows()), | 
 |     m_det_p(0), | 
 |     m_isInitialized(false) | 
 | { | 
 |   compute(matrix); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | /** \internal This is the blocked version of fullpivlu_unblocked() */ | 
 | template<typename Scalar, int StorageOrder, typename PivIndex> | 
 | struct partial_lu_impl | 
 | { | 
 |   // FIXME add a stride to Map, so that the following mapping becomes easier, | 
 |   // another option would be to create an expression being able to automatically | 
 |   // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly | 
 |   // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix, | 
 |   // and Block. | 
 |   typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU; | 
 |   typedef Block<MapLU, Dynamic, Dynamic> MatrixType; | 
 |   typedef Block<MatrixType,Dynamic,Dynamic> BlockType; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   typedef typename MatrixType::Index Index; | 
 |  | 
 |   /** \internal performs the LU decomposition in-place of the matrix \a lu | 
 |     * using an unblocked algorithm. | 
 |     * | 
 |     * In addition, this function returns the row transpositions in the | 
 |     * vector \a row_transpositions which must have a size equal to the number | 
 |     * of columns of the matrix \a lu, and an integer \a nb_transpositions | 
 |     * which returns the actual number of transpositions. | 
 |     * | 
 |     * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. | 
 |     */ | 
 |   static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions) | 
 |   { | 
 |     const Index rows = lu.rows(); | 
 |     const Index cols = lu.cols(); | 
 |     const Index size = std::min(rows,cols); | 
 |     nb_transpositions = 0; | 
 |     int first_zero_pivot = -1; | 
 |     for(Index k = 0; k < size; ++k) | 
 |     { | 
 |       Index rrows = rows-k-1; | 
 |       Index rcols = cols-k-1; | 
 |          | 
 |       Index row_of_biggest_in_col; | 
 |       RealScalar biggest_in_corner | 
 |         = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col); | 
 |       row_of_biggest_in_col += k; | 
 |  | 
 |       row_transpositions[k] = row_of_biggest_in_col; | 
 |  | 
 |       if(biggest_in_corner != 0) | 
 |       { | 
 |         if(k != row_of_biggest_in_col) | 
 |         { | 
 |           lu.row(k).swap(lu.row(row_of_biggest_in_col)); | 
 |           ++nb_transpositions; | 
 |         } | 
 |  | 
 |         // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k) | 
 |         // overflow but not the actual quotient? | 
 |         lu.col(k).tail(rrows) /= lu.coeff(k,k); | 
 |       } | 
 |       else if(first_zero_pivot==-1) | 
 |       { | 
 |         // the pivot is exactly zero, we record the index of the first pivot which is exactly 0, | 
 |         // and continue the factorization such we still have A = PLU | 
 |         first_zero_pivot = k; | 
 |       } | 
 |  | 
 |       if(k<rows-1) | 
 |         lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols); | 
 |     } | 
 |     return first_zero_pivot; | 
 |   } | 
 |  | 
 |   /** \internal performs the LU decomposition in-place of the matrix represented | 
 |     * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a | 
 |     * recursive, blocked algorithm. | 
 |     * | 
 |     * In addition, this function returns the row transpositions in the | 
 |     * vector \a row_transpositions which must have a size equal to the number | 
 |     * of columns of the matrix \a lu, and an integer \a nb_transpositions | 
 |     * which returns the actual number of transpositions. | 
 |     * | 
 |     * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. | 
 |     * | 
 |     * \note This very low level interface using pointers, etc. is to: | 
 |     *   1 - reduce the number of instanciations to the strict minimum | 
 |     *   2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > > | 
 |     */ | 
 |   static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256) | 
 |   { | 
 |     MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols); | 
 |     MatrixType lu(lu1,0,0,rows,cols); | 
 |  | 
 |     const Index size = std::min(rows,cols); | 
 |  | 
 |     // if the matrix is too small, no blocking: | 
 |     if(size<=16) | 
 |     { | 
 |       return unblocked_lu(lu, row_transpositions, nb_transpositions); | 
 |     } | 
 |  | 
 |     // automatically adjust the number of subdivisions to the size | 
 |     // of the matrix so that there is enough sub blocks: | 
 |     Index blockSize; | 
 |     { | 
 |       blockSize = size/8; | 
 |       blockSize = (blockSize/16)*16; | 
 |       blockSize = std::min(std::max(blockSize,Index(8)), maxBlockSize); | 
 |     } | 
 |  | 
 |     nb_transpositions = 0; | 
 |     int first_zero_pivot = -1; | 
 |     for(Index k = 0; k < size; k+=blockSize) | 
 |     { | 
 |       Index bs = std::min(size-k,blockSize); // actual size of the block | 
 |       Index trows = rows - k - bs; // trailing rows | 
 |       Index tsize = size - k - bs; // trailing size | 
 |  | 
 |       // partition the matrix: | 
 |       //                          A00 | A01 | A02 | 
 |       // lu  = A_0 | A_1 | A_2 =  A10 | A11 | A12 | 
 |       //                          A20 | A21 | A22 | 
 |       BlockType A_0(lu,0,0,rows,k); | 
 |       BlockType A_2(lu,0,k+bs,rows,tsize); | 
 |       BlockType A11(lu,k,k,bs,bs); | 
 |       BlockType A12(lu,k,k+bs,bs,tsize); | 
 |       BlockType A21(lu,k+bs,k,trows,bs); | 
 |       BlockType A22(lu,k+bs,k+bs,trows,tsize); | 
 |  | 
 |       PivIndex nb_transpositions_in_panel; | 
 |       // recursively call the blocked LU algorithm on [A11^T A21^T]^T | 
 |       // with a very small blocking size: | 
 |       Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, | 
 |                    row_transpositions+k, nb_transpositions_in_panel, 16); | 
 |       if(ret>=0 && first_zero_pivot==-1) | 
 |         first_zero_pivot = k+ret; | 
 |  | 
 |       nb_transpositions += nb_transpositions_in_panel; | 
 |       // update permutations and apply them to A_0 | 
 |       for(Index i=k; i<k+bs; ++i) | 
 |       { | 
 |         Index piv = (row_transpositions[i] += k); | 
 |         A_0.row(i).swap(A_0.row(piv)); | 
 |       } | 
 |  | 
 |       if(trows) | 
 |       { | 
 |         // apply permutations to A_2 | 
 |         for(Index i=k;i<k+bs; ++i) | 
 |           A_2.row(i).swap(A_2.row(row_transpositions[i])); | 
 |  | 
 |         // A12 = A11^-1 A12 | 
 |         A11.template triangularView<UnitLower>().solveInPlace(A12); | 
 |  | 
 |         A22.noalias() -= A21 * A12; | 
 |       } | 
 |     } | 
 |     return first_zero_pivot; | 
 |   } | 
 | }; | 
 |  | 
 | /** \internal performs the LU decomposition with partial pivoting in-place. | 
 |   */ | 
 | template<typename MatrixType, typename TranspositionType> | 
 | void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions) | 
 | { | 
 |   eigen_assert(lu.cols() == row_transpositions.size()); | 
 |   eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); | 
 |  | 
 |   partial_lu_impl | 
 |     <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index> | 
 |     ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); | 
 | } | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | template<typename MatrixType> | 
 | PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix) | 
 | { | 
 |   m_lu = matrix; | 
 |  | 
 |   eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); | 
 |   const Index size = matrix.rows(); | 
 |  | 
 |   m_rowsTranspositions.resize(size); | 
 |  | 
 |   typename TranspositionType::Index nb_transpositions; | 
 |   internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); | 
 |   m_det_p = (nb_transpositions%2) ? -1 : 1; | 
 |  | 
 |   m_p = m_rowsTranspositions; | 
 |  | 
 |   m_isInitialized = true; | 
 |   return *this; | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const | 
 | { | 
 |   eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
 |   return Scalar(m_det_p) * m_lu.diagonal().prod(); | 
 | } | 
 |  | 
 | /** \returns the matrix represented by the decomposition, | 
 |  * i.e., it returns the product: P^{-1} L U. | 
 |  * This function is provided for debug purpose. */ | 
 | template<typename MatrixType> | 
 | MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const | 
 | { | 
 |   eigen_assert(m_isInitialized && "LU is not initialized."); | 
 |   // LU | 
 |   MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix() | 
 |                  * m_lu.template triangularView<Upper>(); | 
 |  | 
 |   // P^{-1}(LU) | 
 |   res = m_p.inverse() * res; | 
 |  | 
 |   return res; | 
 | } | 
 |  | 
 | /***** Implementation of solve() *****************************************************/ | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<typename _MatrixType, typename Rhs> | 
 | struct solve_retval<PartialPivLU<_MatrixType>, Rhs> | 
 |   : solve_retval_base<PartialPivLU<_MatrixType>, Rhs> | 
 | { | 
 |   EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs) | 
 |  | 
 |   template<typename Dest> void evalTo(Dest& dst) const | 
 |   { | 
 |     /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. | 
 |     * So we proceed as follows: | 
 |     * Step 1: compute c = Pb. | 
 |     * Step 2: replace c by the solution x to Lx = c. | 
 |     * Step 3: replace c by the solution x to Ux = c. | 
 |     */ | 
 |  | 
 |     eigen_assert(rhs().rows() == dec().matrixLU().rows()); | 
 |  | 
 |     // Step 1 | 
 |     dst = dec().permutationP() * rhs(); | 
 |  | 
 |     // Step 2 | 
 |     dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst); | 
 |  | 
 |     // Step 3 | 
 |     dec().matrixLU().template triangularView<Upper>().solveInPlace(dst); | 
 |   } | 
 | }; | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | /******** MatrixBase methods *******/ | 
 |  | 
 | /** \lu_module | 
 |   * | 
 |   * \return the partial-pivoting LU decomposition of \c *this. | 
 |   * | 
 |   * \sa class PartialPivLU | 
 |   */ | 
 | template<typename Derived> | 
 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> | 
 | MatrixBase<Derived>::partialPivLu() const | 
 | { | 
 |   return PartialPivLU<PlainObject>(eval()); | 
 | } | 
 |  | 
 | #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS | 
 | /** \lu_module | 
 |   * | 
 |   * Synonym of partialPivLu(). | 
 |   * | 
 |   * \return the partial-pivoting LU decomposition of \c *this. | 
 |   * | 
 |   * \sa class PartialPivLU | 
 |   */ | 
 | template<typename Derived> | 
 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> | 
 | MatrixBase<Derived>::lu() const | 
 | { | 
 |   return PartialPivLU<PlainObject>(eval()); | 
 | } | 
 | #endif | 
 |  | 
 | #endif // EIGEN_PARTIALLU_H |