|  |  | 
|  | // g++ -DNDEBUG -O3 -I.. benchEigenSolver.cpp  -o benchEigenSolver && ./benchEigenSolver | 
|  | // options: | 
|  | //  -DBENCH_GMM | 
|  | //  -DBENCH_GSL -lgsl /usr/lib/libcblas.so.3 | 
|  | //  -DEIGEN_DONT_VECTORIZE | 
|  | //  -msse2 | 
|  | //  -DREPEAT=100 | 
|  | //  -DTRIES=10 | 
|  | //  -DSCALAR=double | 
|  |  | 
|  | #include <iostream> | 
|  |  | 
|  | #include <Eigen/Core> | 
|  | #include <Eigen/QR> | 
|  | #include <bench/BenchUtil.h> | 
|  | using namespace Eigen; | 
|  |  | 
|  | #ifndef REPEAT | 
|  | #define REPEAT 1000 | 
|  | #endif | 
|  |  | 
|  | #ifndef TRIES | 
|  | #define TRIES 4 | 
|  | #endif | 
|  |  | 
|  | #ifndef SCALAR | 
|  | #define SCALAR float | 
|  | #endif | 
|  |  | 
|  | typedef SCALAR Scalar; | 
|  |  | 
|  | template <typename MatrixType> | 
|  | __attribute__ ((noinline)) void benchEigenSolver(const MatrixType& m) | 
|  | { | 
|  | int rows = m.rows(); | 
|  | int cols = m.cols(); | 
|  |  | 
|  | int stdRepeats = std::max(1,int((REPEAT*1000)/(rows*rows*sqrt(rows)))); | 
|  | int saRepeats = stdRepeats * 4; | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | 
|  |  | 
|  | MatrixType a = MatrixType::Random(rows,cols); | 
|  | SquareMatrixType covMat =  a * a.adjoint(); | 
|  |  | 
|  | BenchTimer timerSa, timerStd; | 
|  |  | 
|  | Scalar acc = 0; | 
|  | int r = internal::random<int>(0,covMat.rows()-1); | 
|  | int c = internal::random<int>(0,covMat.cols()-1); | 
|  | { | 
|  | SelfAdjointEigenSolver<SquareMatrixType> ei(covMat); | 
|  | for (int t=0; t<TRIES; ++t) | 
|  | { | 
|  | timerSa.start(); | 
|  | for (int k=0; k<saRepeats; ++k) | 
|  | { | 
|  | ei.compute(covMat); | 
|  | acc += ei.eigenvectors().coeff(r,c); | 
|  | } | 
|  | timerSa.stop(); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | EigenSolver<SquareMatrixType> ei(covMat); | 
|  | for (int t=0; t<TRIES; ++t) | 
|  | { | 
|  | timerStd.start(); | 
|  | for (int k=0; k<stdRepeats; ++k) | 
|  | { | 
|  | ei.compute(covMat); | 
|  | acc += ei.eigenvectors().coeff(r,c); | 
|  | } | 
|  | timerStd.stop(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MatrixType::RowsAtCompileTime==Dynamic) | 
|  | std::cout << "dyn   "; | 
|  | else | 
|  | std::cout << "fixed "; | 
|  | std::cout << covMat.rows() << " \t" | 
|  | << timerSa.value() * REPEAT / saRepeats << "s \t" | 
|  | << timerStd.value() * REPEAT / stdRepeats << "s"; | 
|  |  | 
|  | #ifdef BENCH_GMM | 
|  | if (MatrixType::RowsAtCompileTime==Dynamic) | 
|  | { | 
|  | timerSa.reset(); | 
|  | timerStd.reset(); | 
|  |  | 
|  | gmm::dense_matrix<Scalar> gmmCovMat(covMat.rows(),covMat.cols()); | 
|  | gmm::dense_matrix<Scalar> eigvect(covMat.rows(),covMat.cols()); | 
|  | std::vector<Scalar> eigval(covMat.rows()); | 
|  | eiToGmm(covMat, gmmCovMat); | 
|  | for (int t=0; t<TRIES; ++t) | 
|  | { | 
|  | timerSa.start(); | 
|  | for (int k=0; k<saRepeats; ++k) | 
|  | { | 
|  | gmm::symmetric_qr_algorithm(gmmCovMat, eigval, eigvect); | 
|  | acc += eigvect(r,c); | 
|  | } | 
|  | timerSa.stop(); | 
|  | } | 
|  | // the non-selfadjoint solver does not compute the eigen vectors | 
|  | //     for (int t=0; t<TRIES; ++t) | 
|  | //     { | 
|  | //       timerStd.start(); | 
|  | //       for (int k=0; k<stdRepeats; ++k) | 
|  | //       { | 
|  | //         gmm::implicit_qr_algorithm(gmmCovMat, eigval, eigvect); | 
|  | //         acc += eigvect(r,c); | 
|  | //       } | 
|  | //       timerStd.stop(); | 
|  | //     } | 
|  |  | 
|  | std::cout << " | \t" | 
|  | << timerSa.value() * REPEAT / saRepeats << "s" | 
|  | << /*timerStd.value() * REPEAT / stdRepeats << "s"*/ "   na   "; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef BENCH_GSL | 
|  | if (MatrixType::RowsAtCompileTime==Dynamic) | 
|  | { | 
|  | timerSa.reset(); | 
|  | timerStd.reset(); | 
|  |  | 
|  | gsl_matrix* gslCovMat = gsl_matrix_alloc(covMat.rows(),covMat.cols()); | 
|  | gsl_matrix* gslCopy = gsl_matrix_alloc(covMat.rows(),covMat.cols()); | 
|  | gsl_matrix* eigvect = gsl_matrix_alloc(covMat.rows(),covMat.cols()); | 
|  | gsl_vector* eigval  = gsl_vector_alloc(covMat.rows()); | 
|  | gsl_eigen_symmv_workspace* eisymm = gsl_eigen_symmv_alloc(covMat.rows()); | 
|  |  | 
|  | gsl_matrix_complex* eigvectz = gsl_matrix_complex_alloc(covMat.rows(),covMat.cols()); | 
|  | gsl_vector_complex* eigvalz  = gsl_vector_complex_alloc(covMat.rows()); | 
|  | gsl_eigen_nonsymmv_workspace* einonsymm = gsl_eigen_nonsymmv_alloc(covMat.rows()); | 
|  |  | 
|  | eiToGsl(covMat, &gslCovMat); | 
|  | for (int t=0; t<TRIES; ++t) | 
|  | { | 
|  | timerSa.start(); | 
|  | for (int k=0; k<saRepeats; ++k) | 
|  | { | 
|  | gsl_matrix_memcpy(gslCopy,gslCovMat); | 
|  | gsl_eigen_symmv(gslCopy, eigval, eigvect, eisymm); | 
|  | acc += gsl_matrix_get(eigvect,r,c); | 
|  | } | 
|  | timerSa.stop(); | 
|  | } | 
|  | for (int t=0; t<TRIES; ++t) | 
|  | { | 
|  | timerStd.start(); | 
|  | for (int k=0; k<stdRepeats; ++k) | 
|  | { | 
|  | gsl_matrix_memcpy(gslCopy,gslCovMat); | 
|  | gsl_eigen_nonsymmv(gslCopy, eigvalz, eigvectz, einonsymm); | 
|  | acc += GSL_REAL(gsl_matrix_complex_get(eigvectz,r,c)); | 
|  | } | 
|  | timerStd.stop(); | 
|  | } | 
|  |  | 
|  | std::cout << " | \t" | 
|  | << timerSa.value() * REPEAT / saRepeats << "s \t" | 
|  | << timerStd.value() * REPEAT / stdRepeats << "s"; | 
|  |  | 
|  | gsl_matrix_free(gslCovMat); | 
|  | gsl_vector_free(gslCopy); | 
|  | gsl_matrix_free(eigvect); | 
|  | gsl_vector_free(eigval); | 
|  | gsl_matrix_complex_free(eigvectz); | 
|  | gsl_vector_complex_free(eigvalz); | 
|  | gsl_eigen_symmv_free(eisymm); | 
|  | gsl_eigen_nonsymmv_free(einonsymm); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | std::cout << "\n"; | 
|  |  | 
|  | // make sure the compiler does not optimize too much | 
|  | if (acc==123) | 
|  | std::cout << acc; | 
|  | } | 
|  |  | 
|  | int main(int argc, char* argv[]) | 
|  | { | 
|  | const int dynsizes[] = {4,6,8,12,16,24,32,64,128,256,512,0}; | 
|  | std::cout << "size            selfadjoint       generic"; | 
|  | #ifdef BENCH_GMM | 
|  | std::cout << "        GMM++          "; | 
|  | #endif | 
|  | #ifdef BENCH_GSL | 
|  | std::cout << "       GSL (double + ATLAS)  "; | 
|  | #endif | 
|  | std::cout << "\n"; | 
|  | for (uint i=0; dynsizes[i]>0; ++i) | 
|  | benchEigenSolver(Matrix<Scalar,Dynamic,Dynamic>(dynsizes[i],dynsizes[i])); | 
|  |  | 
|  | benchEigenSolver(Matrix<Scalar,2,2>()); | 
|  | benchEigenSolver(Matrix<Scalar,3,3>()); | 
|  | benchEigenSolver(Matrix<Scalar,4,4>()); | 
|  | benchEigenSolver(Matrix<Scalar,6,6>()); | 
|  | benchEigenSolver(Matrix<Scalar,8,8>()); | 
|  | benchEigenSolver(Matrix<Scalar,12,12>()); | 
|  | benchEigenSolver(Matrix<Scalar,16,16>()); | 
|  | return 0; | 
|  | } | 
|  |  |