|  |  | 
|  | // g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2  ./a.out | 
|  | // icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp  && OMP_NUM_THREADS=2  ./a.out | 
|  |  | 
|  | #include <iostream> | 
|  | #include <Eigen/Core> | 
|  | #include <bench/BenchTimer.h> | 
|  |  | 
|  | using namespace std; | 
|  | using namespace Eigen; | 
|  |  | 
|  | #ifndef SCALAR | 
|  | // #define SCALAR std::complex<float> | 
|  | #define SCALAR float | 
|  | #endif | 
|  |  | 
|  | typedef SCALAR Scalar; | 
|  | typedef NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<RealScalar,Dynamic,Dynamic> A; | 
|  | typedef Matrix</*Real*/Scalar,Dynamic,Dynamic> B; | 
|  | typedef Matrix<Scalar,Dynamic,Dynamic> C; | 
|  | typedef Matrix<RealScalar,Dynamic,Dynamic> M; | 
|  |  | 
|  | #ifdef HAVE_BLAS | 
|  |  | 
|  | extern "C" { | 
|  | #include <bench/btl/libs/C_BLAS/blas.h> | 
|  | } | 
|  |  | 
|  | static float fone = 1; | 
|  | static float fzero = 0; | 
|  | static double done = 1; | 
|  | static double szero = 0; | 
|  | static std::complex<float> cfone = 1; | 
|  | static std::complex<float> cfzero = 0; | 
|  | static std::complex<double> cdone = 1; | 
|  | static std::complex<double> cdzero = 0; | 
|  | static char notrans = 'N'; | 
|  | static char trans = 'T'; | 
|  | static char nonunit = 'N'; | 
|  | static char lower = 'L'; | 
|  | static char right = 'R'; | 
|  | static int intone = 1; | 
|  |  | 
|  | void blas_gemm(const MatrixXf& a, const MatrixXf& b, MatrixXf& c) | 
|  | { | 
|  | int M = c.rows(); int N = c.cols(); int K = a.cols(); | 
|  | int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); | 
|  |  | 
|  | sgemm_(¬rans,¬rans,&M,&N,&K,&fone, | 
|  | const_cast<float*>(a.data()),&lda, | 
|  | const_cast<float*>(b.data()),&ldb,&fone, | 
|  | c.data(),&ldc); | 
|  | } | 
|  |  | 
|  | EIGEN_DONT_INLINE void blas_gemm(const MatrixXd& a, const MatrixXd& b, MatrixXd& c) | 
|  | { | 
|  | int M = c.rows(); int N = c.cols(); int K = a.cols(); | 
|  | int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); | 
|  |  | 
|  | dgemm_(¬rans,¬rans,&M,&N,&K,&done, | 
|  | const_cast<double*>(a.data()),&lda, | 
|  | const_cast<double*>(b.data()),&ldb,&done, | 
|  | c.data(),&ldc); | 
|  | } | 
|  |  | 
|  | void blas_gemm(const MatrixXcf& a, const MatrixXcf& b, MatrixXcf& c) | 
|  | { | 
|  | int M = c.rows(); int N = c.cols(); int K = a.cols(); | 
|  | int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); | 
|  |  | 
|  | cgemm_(¬rans,¬rans,&M,&N,&K,(float*)&cfone, | 
|  | const_cast<float*>((const float*)a.data()),&lda, | 
|  | const_cast<float*>((const float*)b.data()),&ldb,(float*)&cfone, | 
|  | (float*)c.data(),&ldc); | 
|  | } | 
|  |  | 
|  | void blas_gemm(const MatrixXcd& a, const MatrixXcd& b, MatrixXcd& c) | 
|  | { | 
|  | int M = c.rows(); int N = c.cols(); int K = a.cols(); | 
|  | int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); | 
|  |  | 
|  | zgemm_(¬rans,¬rans,&M,&N,&K,(double*)&cdone, | 
|  | const_cast<double*>((const double*)a.data()),&lda, | 
|  | const_cast<double*>((const double*)b.data()),&ldb,(double*)&cdone, | 
|  | (double*)c.data(),&ldc); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | #endif | 
|  |  | 
|  | void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr, M& ci) | 
|  | { | 
|  | cr.noalias() += ar * br; | 
|  | cr.noalias() -= ai * bi; | 
|  | ci.noalias() += ar * bi; | 
|  | ci.noalias() += ai * br; | 
|  | } | 
|  |  | 
|  | void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci) | 
|  | { | 
|  | cr.noalias() += a * br; | 
|  | ci.noalias() += a * bi; | 
|  | } | 
|  |  | 
|  | void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci) | 
|  | { | 
|  | cr.noalias() += ar * b; | 
|  | ci.noalias() += ai * b; | 
|  | } | 
|  |  | 
|  | template<typename A, typename B, typename C> | 
|  | EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c) | 
|  | { | 
|  | c.noalias() += a * b; | 
|  | } | 
|  |  | 
|  | int main(int argc, char ** argv) | 
|  | { | 
|  | std::ptrdiff_t l1 = internal::queryL1CacheSize(); | 
|  | std::ptrdiff_t l2 = internal::queryTopLevelCacheSize(); | 
|  | std::cout << "L1 cache size     = " << (l1>0 ? l1/1024 : -1) << " KB\n"; | 
|  | std::cout << "L2/L3 cache size  = " << (l2>0 ? l2/1024 : -1) << " KB\n"; | 
|  | typedef internal::gebp_traits<Scalar,Scalar> Traits; | 
|  | std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr << "\n"; | 
|  |  | 
|  | int rep = 1;    // number of repetitions per try | 
|  | int tries = 2;  // number of tries, we keep the best | 
|  |  | 
|  | int s = 2048; | 
|  | int cache_size = -1; | 
|  |  | 
|  | bool need_help = false; | 
|  | for (int i=1; i<argc; ++i) | 
|  | { | 
|  | if(argv[i][0]=='s') | 
|  | s = atoi(argv[i]+1); | 
|  | else if(argv[i][0]=='c') | 
|  | cache_size = atoi(argv[i]+1); | 
|  | else if(argv[i][0]=='t') | 
|  | tries = atoi(argv[i]+1); | 
|  | else if(argv[i][0]=='p') | 
|  | rep = atoi(argv[i]+1); | 
|  | else | 
|  | need_help = true; | 
|  | } | 
|  |  | 
|  | if(need_help) | 
|  | { | 
|  | std::cout << argv[0] << " s<matrix size> c<cache size> t<nb tries> p<nb repeats>\n"; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if(cache_size>0) | 
|  | setCpuCacheSizes(cache_size,96*cache_size); | 
|  |  | 
|  | int m = s; | 
|  | int n = s; | 
|  | int p = s; | 
|  | A a(m,p); a.setRandom(); | 
|  | B b(p,n); b.setRandom(); | 
|  | C c(m,n); c.setOnes(); | 
|  |  | 
|  | std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n"; | 
|  | std::ptrdiff_t mc(m), nc(n), kc(p); | 
|  | computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc); | 
|  | std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << "\n"; | 
|  |  | 
|  | C r = c; | 
|  |  | 
|  | // check the parallel product is correct | 
|  | #if defined EIGEN_HAS_OPENMP | 
|  | int procs = omp_get_max_threads(); | 
|  | if(procs>1) | 
|  | { | 
|  | #ifdef HAVE_BLAS | 
|  | blas_gemm(a,b,r); | 
|  | #else | 
|  | omp_set_num_threads(1); | 
|  | r.noalias() += a * b; | 
|  | omp_set_num_threads(procs); | 
|  | #endif | 
|  | c.noalias() += a * b; | 
|  | if(!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n"; | 
|  | } | 
|  | #elif defined HAVE_BLAS | 
|  | blas_gemm(a,b,r); | 
|  | c.noalias() += a * b; | 
|  | if(!r.isApprox(c)) std::cerr << "Warning, your product is crap!\n\n"; | 
|  | //     std::cerr << r << "\n\n" << c << "\n\n"; | 
|  | #else | 
|  | gemm(a,b,c); | 
|  | r.noalias() += a.cast<Scalar>() * b.cast<Scalar>(); | 
|  | if(!r.isApprox(c)) std::cerr << "Warning, your product is crap!\n\n"; | 
|  | //     std::cerr << c << "\n\n"; | 
|  | //     std::cerr << r << "\n\n"; | 
|  | #endif | 
|  |  | 
|  | #ifdef HAVE_BLAS | 
|  | BenchTimer tblas; | 
|  | BENCH(tblas, tries, rep, blas_gemm(a,b,c)); | 
|  | std::cout << "blas  cpu         " << tblas.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/tblas.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << tblas.total(CPU_TIMER)  << "s)\n"; | 
|  | std::cout << "blas  real        " << tblas.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/tblas.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << tblas.total(REAL_TIMER) << "s)\n"; | 
|  | #endif | 
|  |  | 
|  | BenchTimer tmt; | 
|  | BENCH(tmt, tries, rep, gemm(a,b,c)); | 
|  | std::cout << "eigen cpu         " << tmt.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << tmt.total(CPU_TIMER)  << "s)\n"; | 
|  | std::cout << "eigen real        " << tmt.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n"; | 
|  |  | 
|  | #ifdef EIGEN_HAS_OPENMP | 
|  | if(procs>1) | 
|  | { | 
|  | BenchTimer tmono; | 
|  | //omp_set_num_threads(1); | 
|  | Eigen::setNbThreads(1); | 
|  | BENCH(tmono, tries, rep, gemm(a,b,c)); | 
|  | std::cout << "eigen mono cpu    " << tmono.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/tmono.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << tmono.total(CPU_TIMER)  << "s)\n"; | 
|  | std::cout << "eigen mono real   " << tmono.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/tmono.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << tmono.total(REAL_TIMER) << "s)\n"; | 
|  | std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER)  << " => " << (100.0*tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER))/procs << "%\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef DECOUPLED | 
|  | if((NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) | 
|  | { | 
|  | M ar(m,p); ar.setRandom(); | 
|  | M ai(m,p); ai.setRandom(); | 
|  | M br(p,n); br.setRandom(); | 
|  | M bi(p,n); bi.setRandom(); | 
|  | M cr(m,n); cr.setRandom(); | 
|  | M ci(m,n); ci.setRandom(); | 
|  |  | 
|  | BenchTimer t; | 
|  | BENCH(t, tries, rep, matlab_cplx_cplx(ar,ai,br,bi,cr,ci)); | 
|  | std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << t.total(CPU_TIMER)  << "s)\n"; | 
|  | std::cout << "\"matlab\" real   " << t.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; | 
|  | } | 
|  | if((!NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) | 
|  | { | 
|  | M a(m,p);  a.setRandom(); | 
|  | M br(p,n); br.setRandom(); | 
|  | M bi(p,n); bi.setRandom(); | 
|  | M cr(m,n); cr.setRandom(); | 
|  | M ci(m,n); ci.setRandom(); | 
|  |  | 
|  | BenchTimer t; | 
|  | BENCH(t, tries, rep, matlab_real_cplx(a,br,bi,cr,ci)); | 
|  | std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << t.total(CPU_TIMER)  << "s)\n"; | 
|  | std::cout << "\"matlab\" real   " << t.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; | 
|  | } | 
|  | if((NumTraits<A::Scalar>::IsComplex) && (!NumTraits<B::Scalar>::IsComplex)) | 
|  | { | 
|  | M ar(m,p); ar.setRandom(); | 
|  | M ai(m,p); ai.setRandom(); | 
|  | M b(p,n);  b.setRandom(); | 
|  | M cr(m,n); cr.setRandom(); | 
|  | M ci(m,n); ci.setRandom(); | 
|  |  | 
|  | BenchTimer t; | 
|  | BENCH(t, tries, rep, matlab_cplx_real(ar,ai,b,cr,ci)); | 
|  | std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << t.total(CPU_TIMER)  << "s)\n"; | 
|  | std::cout << "\"matlab\" real   " << t.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  |