|  | SUBROUTINE DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) | 
|  | *     .. Scalar Arguments .. | 
|  | INTEGER INCX,K,LDA,N | 
|  | CHARACTER DIAG,TRANS,UPLO | 
|  | *     .. | 
|  | *     .. Array Arguments .. | 
|  | DOUBLE PRECISION A(LDA,*),X(*) | 
|  | *     .. | 
|  | * | 
|  | *  Purpose | 
|  | *  ======= | 
|  | * | 
|  | *  DTBSV  solves one of the systems of equations | 
|  | * | 
|  | *     A*x = b,   or   A'*x = b, | 
|  | * | 
|  | *  where b and x are n element vectors and A is an n by n unit, or | 
|  | *  non-unit, upper or lower triangular band matrix, with ( k + 1 ) | 
|  | *  diagonals. | 
|  | * | 
|  | *  No test for singularity or near-singularity is included in this | 
|  | *  routine. Such tests must be performed before calling this routine. | 
|  | * | 
|  | *  Arguments | 
|  | *  ========== | 
|  | * | 
|  | *  UPLO   - CHARACTER*1. | 
|  | *           On entry, UPLO specifies whether the matrix is an upper or | 
|  | *           lower triangular matrix as follows: | 
|  | * | 
|  | *              UPLO = 'U' or 'u'   A is an upper triangular matrix. | 
|  | * | 
|  | *              UPLO = 'L' or 'l'   A is a lower triangular matrix. | 
|  | * | 
|  | *           Unchanged on exit. | 
|  | * | 
|  | *  TRANS  - CHARACTER*1. | 
|  | *           On entry, TRANS specifies the equations to be solved as | 
|  | *           follows: | 
|  | * | 
|  | *              TRANS = 'N' or 'n'   A*x = b. | 
|  | * | 
|  | *              TRANS = 'T' or 't'   A'*x = b. | 
|  | * | 
|  | *              TRANS = 'C' or 'c'   A'*x = b. | 
|  | * | 
|  | *           Unchanged on exit. | 
|  | * | 
|  | *  DIAG   - CHARACTER*1. | 
|  | *           On entry, DIAG specifies whether or not A is unit | 
|  | *           triangular as follows: | 
|  | * | 
|  | *              DIAG = 'U' or 'u'   A is assumed to be unit triangular. | 
|  | * | 
|  | *              DIAG = 'N' or 'n'   A is not assumed to be unit | 
|  | *                                  triangular. | 
|  | * | 
|  | *           Unchanged on exit. | 
|  | * | 
|  | *  N      - INTEGER. | 
|  | *           On entry, N specifies the order of the matrix A. | 
|  | *           N must be at least zero. | 
|  | *           Unchanged on exit. | 
|  | * | 
|  | *  K      - INTEGER. | 
|  | *           On entry with UPLO = 'U' or 'u', K specifies the number of | 
|  | *           super-diagonals of the matrix A. | 
|  | *           On entry with UPLO = 'L' or 'l', K specifies the number of | 
|  | *           sub-diagonals of the matrix A. | 
|  | *           K must satisfy  0 .le. K. | 
|  | *           Unchanged on exit. | 
|  | * | 
|  | *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). | 
|  | *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) | 
|  | *           by n part of the array A must contain the upper triangular | 
|  | *           band part of the matrix of coefficients, supplied column by | 
|  | *           column, with the leading diagonal of the matrix in row | 
|  | *           ( k + 1 ) of the array, the first super-diagonal starting at | 
|  | *           position 2 in row k, and so on. The top left k by k triangle | 
|  | *           of the array A is not referenced. | 
|  | *           The following program segment will transfer an upper | 
|  | *           triangular band matrix from conventional full matrix storage | 
|  | *           to band storage: | 
|  | * | 
|  | *                 DO 20, J = 1, N | 
|  | *                    M = K + 1 - J | 
|  | *                    DO 10, I = MAX( 1, J - K ), J | 
|  | *                       A( M + I, J ) = matrix( I, J ) | 
|  | *              10    CONTINUE | 
|  | *              20 CONTINUE | 
|  | * | 
|  | *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) | 
|  | *           by n part of the array A must contain the lower triangular | 
|  | *           band part of the matrix of coefficients, supplied column by | 
|  | *           column, with the leading diagonal of the matrix in row 1 of | 
|  | *           the array, the first sub-diagonal starting at position 1 in | 
|  | *           row 2, and so on. The bottom right k by k triangle of the | 
|  | *           array A is not referenced. | 
|  | *           The following program segment will transfer a lower | 
|  | *           triangular band matrix from conventional full matrix storage | 
|  | *           to band storage: | 
|  | * | 
|  | *                 DO 20, J = 1, N | 
|  | *                    M = 1 - J | 
|  | *                    DO 10, I = J, MIN( N, J + K ) | 
|  | *                       A( M + I, J ) = matrix( I, J ) | 
|  | *              10    CONTINUE | 
|  | *              20 CONTINUE | 
|  | * | 
|  | *           Note that when DIAG = 'U' or 'u' the elements of the array A | 
|  | *           corresponding to the diagonal elements of the matrix are not | 
|  | *           referenced, but are assumed to be unity. | 
|  | *           Unchanged on exit. | 
|  | * | 
|  | *  LDA    - INTEGER. | 
|  | *           On entry, LDA specifies the first dimension of A as declared | 
|  | *           in the calling (sub) program. LDA must be at least | 
|  | *           ( k + 1 ). | 
|  | *           Unchanged on exit. | 
|  | * | 
|  | *  X      - DOUBLE PRECISION array of dimension at least | 
|  | *           ( 1 + ( n - 1 )*abs( INCX ) ). | 
|  | *           Before entry, the incremented array X must contain the n | 
|  | *           element right-hand side vector b. On exit, X is overwritten | 
|  | *           with the solution vector x. | 
|  | * | 
|  | *  INCX   - INTEGER. | 
|  | *           On entry, INCX specifies the increment for the elements of | 
|  | *           X. INCX must not be zero. | 
|  | *           Unchanged on exit. | 
|  | * | 
|  | *  Further Details | 
|  | *  =============== | 
|  | * | 
|  | *  Level 2 Blas routine. | 
|  | * | 
|  | *  -- Written on 22-October-1986. | 
|  | *     Jack Dongarra, Argonne National Lab. | 
|  | *     Jeremy Du Croz, Nag Central Office. | 
|  | *     Sven Hammarling, Nag Central Office. | 
|  | *     Richard Hanson, Sandia National Labs. | 
|  | * | 
|  | *  ===================================================================== | 
|  | * | 
|  | *     .. Parameters .. | 
|  | DOUBLE PRECISION ZERO | 
|  | PARAMETER (ZERO=0.0D+0) | 
|  | *     .. | 
|  | *     .. Local Scalars .. | 
|  | DOUBLE PRECISION TEMP | 
|  | INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L | 
|  | LOGICAL NOUNIT | 
|  | *     .. | 
|  | *     .. External Functions .. | 
|  | LOGICAL LSAME | 
|  | EXTERNAL LSAME | 
|  | *     .. | 
|  | *     .. External Subroutines .. | 
|  | EXTERNAL XERBLA | 
|  | *     .. | 
|  | *     .. Intrinsic Functions .. | 
|  | INTRINSIC MAX,MIN | 
|  | *     .. | 
|  | * | 
|  | *     Test the input parameters. | 
|  | * | 
|  | INFO = 0 | 
|  | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN | 
|  | INFO = 1 | 
|  | ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. | 
|  | +         .NOT.LSAME(TRANS,'C')) THEN | 
|  | INFO = 2 | 
|  | ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN | 
|  | INFO = 3 | 
|  | ELSE IF (N.LT.0) THEN | 
|  | INFO = 4 | 
|  | ELSE IF (K.LT.0) THEN | 
|  | INFO = 5 | 
|  | ELSE IF (LDA.LT. (K+1)) THEN | 
|  | INFO = 7 | 
|  | ELSE IF (INCX.EQ.0) THEN | 
|  | INFO = 9 | 
|  | END IF | 
|  | IF (INFO.NE.0) THEN | 
|  | CALL XERBLA('DTBSV ',INFO) | 
|  | RETURN | 
|  | END IF | 
|  | * | 
|  | *     Quick return if possible. | 
|  | * | 
|  | IF (N.EQ.0) RETURN | 
|  | * | 
|  | NOUNIT = LSAME(DIAG,'N') | 
|  | * | 
|  | *     Set up the start point in X if the increment is not unity. This | 
|  | *     will be  ( N - 1 )*INCX  too small for descending loops. | 
|  | * | 
|  | IF (INCX.LE.0) THEN | 
|  | KX = 1 - (N-1)*INCX | 
|  | ELSE IF (INCX.NE.1) THEN | 
|  | KX = 1 | 
|  | END IF | 
|  | * | 
|  | *     Start the operations. In this version the elements of A are | 
|  | *     accessed by sequentially with one pass through A. | 
|  | * | 
|  | IF (LSAME(TRANS,'N')) THEN | 
|  | * | 
|  | *        Form  x := inv( A )*x. | 
|  | * | 
|  | IF (LSAME(UPLO,'U')) THEN | 
|  | KPLUS1 = K + 1 | 
|  | IF (INCX.EQ.1) THEN | 
|  | DO 20 J = N,1,-1 | 
|  | IF (X(J).NE.ZERO) THEN | 
|  | L = KPLUS1 - J | 
|  | IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J) | 
|  | TEMP = X(J) | 
|  | DO 10 I = J - 1,MAX(1,J-K),-1 | 
|  | X(I) = X(I) - TEMP*A(L+I,J) | 
|  | 10                     CONTINUE | 
|  | END IF | 
|  | 20             CONTINUE | 
|  | ELSE | 
|  | KX = KX + (N-1)*INCX | 
|  | JX = KX | 
|  | DO 40 J = N,1,-1 | 
|  | KX = KX - INCX | 
|  | IF (X(JX).NE.ZERO) THEN | 
|  | IX = KX | 
|  | L = KPLUS1 - J | 
|  | IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J) | 
|  | TEMP = X(JX) | 
|  | DO 30 I = J - 1,MAX(1,J-K),-1 | 
|  | X(IX) = X(IX) - TEMP*A(L+I,J) | 
|  | IX = IX - INCX | 
|  | 30                     CONTINUE | 
|  | END IF | 
|  | JX = JX - INCX | 
|  | 40             CONTINUE | 
|  | END IF | 
|  | ELSE | 
|  | IF (INCX.EQ.1) THEN | 
|  | DO 60 J = 1,N | 
|  | IF (X(J).NE.ZERO) THEN | 
|  | L = 1 - J | 
|  | IF (NOUNIT) X(J) = X(J)/A(1,J) | 
|  | TEMP = X(J) | 
|  | DO 50 I = J + 1,MIN(N,J+K) | 
|  | X(I) = X(I) - TEMP*A(L+I,J) | 
|  | 50                     CONTINUE | 
|  | END IF | 
|  | 60             CONTINUE | 
|  | ELSE | 
|  | JX = KX | 
|  | DO 80 J = 1,N | 
|  | KX = KX + INCX | 
|  | IF (X(JX).NE.ZERO) THEN | 
|  | IX = KX | 
|  | L = 1 - J | 
|  | IF (NOUNIT) X(JX) = X(JX)/A(1,J) | 
|  | TEMP = X(JX) | 
|  | DO 70 I = J + 1,MIN(N,J+K) | 
|  | X(IX) = X(IX) - TEMP*A(L+I,J) | 
|  | IX = IX + INCX | 
|  | 70                     CONTINUE | 
|  | END IF | 
|  | JX = JX + INCX | 
|  | 80             CONTINUE | 
|  | END IF | 
|  | END IF | 
|  | ELSE | 
|  | * | 
|  | *        Form  x := inv( A')*x. | 
|  | * | 
|  | IF (LSAME(UPLO,'U')) THEN | 
|  | KPLUS1 = K + 1 | 
|  | IF (INCX.EQ.1) THEN | 
|  | DO 100 J = 1,N | 
|  | TEMP = X(J) | 
|  | L = KPLUS1 - J | 
|  | DO 90 I = MAX(1,J-K),J - 1 | 
|  | TEMP = TEMP - A(L+I,J)*X(I) | 
|  | 90                 CONTINUE | 
|  | IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) | 
|  | X(J) = TEMP | 
|  | 100             CONTINUE | 
|  | ELSE | 
|  | JX = KX | 
|  | DO 120 J = 1,N | 
|  | TEMP = X(JX) | 
|  | IX = KX | 
|  | L = KPLUS1 - J | 
|  | DO 110 I = MAX(1,J-K),J - 1 | 
|  | TEMP = TEMP - A(L+I,J)*X(IX) | 
|  | IX = IX + INCX | 
|  | 110                 CONTINUE | 
|  | IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) | 
|  | X(JX) = TEMP | 
|  | JX = JX + INCX | 
|  | IF (J.GT.K) KX = KX + INCX | 
|  | 120             CONTINUE | 
|  | END IF | 
|  | ELSE | 
|  | IF (INCX.EQ.1) THEN | 
|  | DO 140 J = N,1,-1 | 
|  | TEMP = X(J) | 
|  | L = 1 - J | 
|  | DO 130 I = MIN(N,J+K),J + 1,-1 | 
|  | TEMP = TEMP - A(L+I,J)*X(I) | 
|  | 130                 CONTINUE | 
|  | IF (NOUNIT) TEMP = TEMP/A(1,J) | 
|  | X(J) = TEMP | 
|  | 140             CONTINUE | 
|  | ELSE | 
|  | KX = KX + (N-1)*INCX | 
|  | JX = KX | 
|  | DO 160 J = N,1,-1 | 
|  | TEMP = X(JX) | 
|  | IX = KX | 
|  | L = 1 - J | 
|  | DO 150 I = MIN(N,J+K),J + 1,-1 | 
|  | TEMP = TEMP - A(L+I,J)*X(IX) | 
|  | IX = IX - INCX | 
|  | 150                 CONTINUE | 
|  | IF (NOUNIT) TEMP = TEMP/A(1,J) | 
|  | X(JX) = TEMP | 
|  | JX = JX - INCX | 
|  | IF ((N-J).GE.K) KX = KX - INCX | 
|  | 160             CONTINUE | 
|  | END IF | 
|  | END IF | 
|  | END IF | 
|  | * | 
|  | RETURN | 
|  | * | 
|  | *     End of DTBSV . | 
|  | * | 
|  | END |