|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "common.h" | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(axpy)(int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy) | 
|  | { | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  | Scalar alpha  = *reinterpret_cast<Scalar*>(palpha); | 
|  |  | 
|  | if(*n<=0) return 0; | 
|  |  | 
|  | if(*incx==1 && *incy==1)    vector(y,*n) += alpha * vector(x,*n); | 
|  | else if(*incx>0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,*incx); | 
|  | else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,*incx); | 
|  | else if(*incx<0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,-*incx).reverse(); | 
|  | else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,-*incx).reverse(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) | 
|  | { | 
|  | if(*n<=0) return 0; | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  |  | 
|  | // be carefull, *incx==0 is allowed !! | 
|  | if(*incx==1 && *incy==1) | 
|  | vector(y,*n) = vector(x,*n); | 
|  | else | 
|  | { | 
|  | if(*incx<0) x = x - (*n-1)*(*incx); | 
|  | if(*incy<0) y = y - (*n-1)*(*incy); | 
|  | for(int i=0;i<*n;++i) | 
|  | { | 
|  | *y = *x; | 
|  | x += *incx; | 
|  | y += *incy; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amax_)(int *n, RealScalar *px, int *incx) | 
|  | { | 
|  | if(*n<=0) return 0; | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  |  | 
|  | DenseIndex ret; | 
|  | if(*incx==1)  vector(x,*n).cwiseAbs().maxCoeff(&ret); | 
|  | else          vector(x,*n,std::abs(*incx)).cwiseAbs().maxCoeff(&ret); | 
|  | return ret+1; | 
|  | } | 
|  |  | 
|  | int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amin_)(int *n, RealScalar *px, int *incx) | 
|  | { | 
|  | if(*n<=0) return 0; | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  |  | 
|  | DenseIndex ret; | 
|  | if(*incx==1)  vector(x,*n).cwiseAbs().minCoeff(&ret); | 
|  | else          vector(x,*n,std::abs(*incx)).cwiseAbs().minCoeff(&ret); | 
|  | return ret+1; | 
|  | } | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps) | 
|  | { | 
|  | Scalar& a = *reinterpret_cast<Scalar*>(pa); | 
|  | Scalar& b = *reinterpret_cast<Scalar*>(pb); | 
|  | RealScalar* c = pc; | 
|  | Scalar* s = reinterpret_cast<Scalar*>(ps); | 
|  |  | 
|  | #if !ISCOMPLEX | 
|  | Scalar r,z; | 
|  | Scalar aa = internal::abs(a); | 
|  | Scalar ab = internal::abs(b); | 
|  | if((aa+ab)==Scalar(0)) | 
|  | { | 
|  | *c = 1; | 
|  | *s = 0; | 
|  | r = 0; | 
|  | z = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | r = internal::sqrt(a*a + b*b); | 
|  | Scalar amax = aa>ab ? a : b; | 
|  | r = amax>0 ? r : -r; | 
|  | *c = a/r; | 
|  | *s = b/r; | 
|  | z = 1; | 
|  | if (aa > ab) z = *s; | 
|  | if (ab > aa && *c!=RealScalar(0)) | 
|  | z = Scalar(1)/ *c; | 
|  | } | 
|  | *pa = r; | 
|  | *pb = z; | 
|  | #else | 
|  | Scalar alpha; | 
|  | RealScalar norm,scale; | 
|  | if(internal::abs(a)==RealScalar(0)) | 
|  | { | 
|  | *c = RealScalar(0); | 
|  | *s = Scalar(1); | 
|  | a = b; | 
|  | } | 
|  | else | 
|  | { | 
|  | scale = internal::abs(a) + internal::abs(b); | 
|  | norm = scale*internal::sqrt((internal::abs2(a/scale))+ (internal::abs2(b/scale))); | 
|  | alpha = a/internal::abs(a); | 
|  | *c = internal::abs(a)/norm; | 
|  | *s = alpha*internal::conj(b)/norm; | 
|  | a = alpha*norm; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | //   JacobiRotation<Scalar> r; | 
|  | //   r.makeGivens(a,b); | 
|  | //   *c = r.c(); | 
|  | //   *s = r.s(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx) | 
|  | { | 
|  | if(*n<=0) return 0; | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  |  | 
|  | if(*incx==1)  vector(x,*n) *= alpha; | 
|  | else          vector(x,*n,std::abs(*incx)) *= alpha; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) | 
|  | { | 
|  | if(*n<=0) return 0; | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  |  | 
|  | if(*incx==1 && *incy==1)    vector(y,*n).swap(vector(x,*n)); | 
|  | else if(*incx>0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,*incx)); | 
|  | else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,*incx)); | 
|  | else if(*incx<0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,-*incx).reverse()); | 
|  | else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,-*incx).reverse()); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  |