| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #define EIGEN_NO_STATIC_ASSERT | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template<typename MatrixType> void adjoint(const MatrixType& m) | 
 | { | 
 |   /* this test covers the following files: | 
 |      Transpose.h Conjugate.h Dot.h | 
 |   */ | 
 |   typedef typename MatrixType::Index Index; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | 
 |    | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   RealScalar largerEps = test_precision<RealScalar>(); | 
 |   if (internal::is_same<RealScalar,float>::value) | 
 |     largerEps = RealScalar(1e-3f); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |              m2 = MatrixType::Random(rows, cols), | 
 |              m3(rows, cols), | 
 |              mzero = MatrixType::Zero(rows, cols), | 
 |              identity = SquareMatrixType::Identity(rows, rows), | 
 |              square = SquareMatrixType::Random(rows, rows); | 
 |   VectorType v1 = VectorType::Random(rows), | 
 |              v2 = VectorType::Random(rows), | 
 |              v3 = VectorType::Random(rows), | 
 |              vzero = VectorType::Zero(rows); | 
 |  | 
 |   Scalar s1 = internal::random<Scalar>(), | 
 |          s2 = internal::random<Scalar>(); | 
 |  | 
 |   // check basic compatibility of adjoint, transpose, conjugate | 
 |   VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(),    m1); | 
 |   VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(),    m1); | 
 |  | 
 |   // check multiplicative behavior | 
 |   VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(),           m2.adjoint() * m1); | 
 |   VERIFY_IS_APPROX((s1 * m1).adjoint(),                     internal::conj(s1) * m1.adjoint()); | 
 |  | 
 |   // check basic properties of dot, norm, norm2 | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   VERIFY(internal::isApprox((s1 * v1 + s2 * v2).dot(v3),     internal::conj(s1) * v1.dot(v3) + internal::conj(s2) * v2.dot(v3), largerEps)); | 
 |   VERIFY(internal::isApprox(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), largerEps)); | 
 |   VERIFY_IS_APPROX(internal::conj(v1.dot(v2)),               v2.dot(v1)); | 
 |   VERIFY_IS_APPROX(internal::real(v1.dot(v1)),                v1.squaredNorm()); | 
 |   if(!NumTraits<Scalar>::IsInteger) | 
 |     VERIFY_IS_APPROX(v1.squaredNorm(),                v1.norm() * v1.norm()); | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(vzero.dot(v1)),  static_cast<RealScalar>(1)); | 
 |  | 
 |   // check compatibility of dot and adjoint | 
 |   VERIFY(internal::isApprox(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), largerEps)); | 
 |  | 
 |   // like in testBasicStuff, test operator() to check const-qualification | 
 |   Index r = internal::random<Index>(0, rows-1), | 
 |       c = internal::random<Index>(0, cols-1); | 
 |   VERIFY_IS_APPROX(m1.conjugate()(r,c), internal::conj(m1(r,c))); | 
 |   VERIFY_IS_APPROX(m1.adjoint()(c,r), internal::conj(m1(r,c))); | 
 |  | 
 |   if(!NumTraits<Scalar>::IsInteger) | 
 |   { | 
 |     // check that Random().normalized() works: tricky as the random xpr must be evaluated by | 
 |     // normalized() in order to produce a consistent result. | 
 |     VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1)); | 
 |   } | 
 |  | 
 |   // check inplace transpose | 
 |   m3 = m1; | 
 |   m3.transposeInPlace(); | 
 |   VERIFY_IS_APPROX(m3,m1.transpose()); | 
 |   m3.transposeInPlace(); | 
 |   VERIFY_IS_APPROX(m3,m1); | 
 |  | 
 |   // check inplace adjoint | 
 |   m3 = m1; | 
 |   m3.adjointInPlace(); | 
 |   VERIFY_IS_APPROX(m3,m1.adjoint()); | 
 |   m3.transposeInPlace(); | 
 |   VERIFY_IS_APPROX(m3,m1.conjugate()); | 
 |  | 
 |   // check mixed dot product | 
 |   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; | 
 |   RealVectorType rv1 = RealVectorType::Random(rows); | 
 |   VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1)); | 
 |   VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1)); | 
 | } | 
 |  | 
 | void test_adjoint() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( adjoint(Matrix3d()) ); | 
 |     CALL_SUBTEST_3( adjoint(Matrix4f()) ); | 
 |     CALL_SUBTEST_4( adjoint(MatrixXcf(4, 4)) ); | 
 |     CALL_SUBTEST_5( adjoint(MatrixXi(8, 12)) ); | 
 |     CALL_SUBTEST_6( adjoint(MatrixXf(21, 21)) ); | 
 |   } | 
 |   // test a large matrix only once | 
 |   CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) ); | 
 |  | 
 | #ifdef EIGEN_TEST_PART_4 | 
 |   { | 
 |     MatrixXcf a(10,10), b(10,10); | 
 |     VERIFY_RAISES_ASSERT(a = a.transpose()); | 
 |     VERIFY_RAISES_ASSERT(a = a.transpose() + b); | 
 |     VERIFY_RAISES_ASSERT(a = b + a.transpose()); | 
 |     VERIFY_RAISES_ASSERT(a = a.conjugate().transpose()); | 
 |     VERIFY_RAISES_ASSERT(a = a.adjoint()); | 
 |     VERIFY_RAISES_ASSERT(a = a.adjoint() + b); | 
 |     VERIFY_RAISES_ASSERT(a = b + a.adjoint()); | 
 |  | 
 |     // no assertion should be triggered for these cases: | 
 |     a.transpose() = a.transpose(); | 
 |     a.transpose() += a.transpose(); | 
 |     a.transpose() += a.transpose() + b; | 
 |     a.transpose() = a.adjoint(); | 
 |     a.transpose() += a.adjoint(); | 
 |     a.transpose() += a.adjoint() + b; | 
 |   } | 
 | #endif | 
 | } | 
 |  |