|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. Eigen itself is part of the KDE project. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename MatrixType> void triangular(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | RealScalar largerEps = 10*test_precision<RealScalar>(); | 
|  |  | 
|  | int rows = m.rows(); | 
|  | int cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols), | 
|  | m4(rows, cols), | 
|  | r1(rows, cols), | 
|  | r2(rows, cols), | 
|  | mzero = MatrixType::Zero(rows, cols), | 
|  | mones = MatrixType::Ones(rows, cols), | 
|  | identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | 
|  | ::Identity(rows, rows), | 
|  | square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | 
|  | ::Random(rows, rows); | 
|  | VectorType v1 = VectorType::Random(rows), | 
|  | v2 = VectorType::Random(rows), | 
|  | vzero = VectorType::Zero(rows); | 
|  |  | 
|  | MatrixType m1up = m1.template part<Eigen::UpperTriangular>(); | 
|  | MatrixType m2up = m2.template part<Eigen::UpperTriangular>(); | 
|  |  | 
|  | if (rows*cols>1) | 
|  | { | 
|  | VERIFY(m1up.isUpperTriangular()); | 
|  | VERIFY(m2up.transpose().isLowerTriangular()); | 
|  | VERIFY(!m2.isLowerTriangular()); | 
|  | } | 
|  |  | 
|  | //   VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2); | 
|  |  | 
|  | // test overloaded operator+= | 
|  | r1.setZero(); | 
|  | r2.setZero(); | 
|  | r1.template part<Eigen::UpperTriangular>() +=  m1; | 
|  | r2 += m1up; | 
|  | VERIFY_IS_APPROX(r1,r2); | 
|  |  | 
|  | // test overloaded operator= | 
|  | m1.setZero(); | 
|  | m1.template part<Eigen::UpperTriangular>() = (m2.transpose() * m2).lazy(); | 
|  | m3 = m2.transpose() * m2; | 
|  | VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>().transpose(), m1); | 
|  |  | 
|  | // test overloaded operator= | 
|  | m1.setZero(); | 
|  | m1.template part<Eigen::LowerTriangular>() = (m2.transpose() * m2).lazy(); | 
|  | VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>(), m1); | 
|  |  | 
|  | VERIFY_IS_APPROX(m3.template part<Diagonal>(), m3.diagonal().asDiagonal()); | 
|  |  | 
|  | m1 = MatrixType::Random(rows, cols); | 
|  | for (int i=0; i<rows; ++i) | 
|  | while (ei_abs2(m1(i,i))<1e-3) m1(i,i) = ei_random<Scalar>(); | 
|  |  | 
|  | Transpose<MatrixType> trm4(m4); | 
|  | // test back and forward subsitution | 
|  | m3 = m1.template part<Eigen::LowerTriangular>(); | 
|  | VERIFY(m3.template marked<Eigen::LowerTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>())); | 
|  | VERIFY(m3.transpose().template marked<Eigen::UpperTriangular>() | 
|  | .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>())); | 
|  | // check M * inv(L) using in place API | 
|  | m4 = m3; | 
|  | m3.transpose().template marked<Eigen::UpperTriangular>().solveTriangularInPlace(trm4); | 
|  | VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>())); | 
|  |  | 
|  | m3 = m1.template part<Eigen::UpperTriangular>(); | 
|  | VERIFY(m3.template marked<Eigen::UpperTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>())); | 
|  | VERIFY(m3.transpose().template marked<Eigen::LowerTriangular>() | 
|  | .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>())); | 
|  | // check M * inv(U) using in place API | 
|  | m4 = m3; | 
|  | m3.transpose().template marked<Eigen::LowerTriangular>().solveTriangularInPlace(trm4); | 
|  | VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>())); | 
|  |  | 
|  | m3 = m1.template part<Eigen::UpperTriangular>(); | 
|  | VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::UpperTriangular>().solveTriangular(m2)), largerEps)); | 
|  | m3 = m1.template part<Eigen::LowerTriangular>(); | 
|  | VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::LowerTriangular>().solveTriangular(m2)), largerEps)); | 
|  |  | 
|  | VERIFY((m1.template part<Eigen::UpperTriangular>() * m2.template part<Eigen::UpperTriangular>()).isUpperTriangular()); | 
|  |  | 
|  | // test swap | 
|  | m1.setOnes(); | 
|  | m2.setZero(); | 
|  | m2.template part<Eigen::UpperTriangular>().swap(m1); | 
|  | m3.setZero(); | 
|  | m3.template part<Eigen::UpperTriangular>().setOnes(); | 
|  | VERIFY_IS_APPROX(m2,m3); | 
|  |  | 
|  | } | 
|  |  | 
|  | void selfadjoint() | 
|  | { | 
|  | Matrix2i m; | 
|  | m << 1, 2, | 
|  | 3, 4; | 
|  |  | 
|  | Matrix2i m1 = Matrix2i::Zero(); | 
|  | m1.part<SelfAdjoint>() = m; | 
|  | Matrix2i ref1; | 
|  | ref1 << 1, 2, | 
|  | 2, 4; | 
|  | VERIFY(m1 == ref1); | 
|  |  | 
|  | Matrix2i m2 = Matrix2i::Zero(); | 
|  | m2.part<SelfAdjoint>() = m.part<UpperTriangular>(); | 
|  | Matrix2i ref2; | 
|  | ref2 << 1, 2, | 
|  | 2, 4; | 
|  | VERIFY(m2 == ref2); | 
|  |  | 
|  | Matrix2i m3 = Matrix2i::Zero(); | 
|  | m3.part<SelfAdjoint>() = m.part<LowerTriangular>(); | 
|  | Matrix2i ref3; | 
|  | ref3 << 1, 0, | 
|  | 0, 4; | 
|  | VERIFY(m3 == ref3); | 
|  |  | 
|  | // example inspired from bug 159 | 
|  | int array[] = {1, 2, 3, 4}; | 
|  | Matrix2i::Map(array).part<SelfAdjoint>() = Matrix2i::Random().part<LowerTriangular>(); | 
|  |  | 
|  | std::cout << "hello\n" << array << std::endl; | 
|  | } | 
|  |  | 
|  | void test_eigen2_triangular() | 
|  | { | 
|  | CALL_SUBTEST_8( selfadjoint() ); | 
|  | for(int i = 0; i < g_repeat ; i++) { | 
|  | CALL_SUBTEST_1( triangular(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( triangular(Matrix<float, 2, 2>()) ); | 
|  | CALL_SUBTEST_3( triangular(Matrix3d()) ); | 
|  | CALL_SUBTEST_4( triangular(MatrixXcf(4, 4)) ); | 
|  | CALL_SUBTEST_5( triangular(Matrix<std::complex<float>,8, 8>()) ); | 
|  | CALL_SUBTEST_6( triangular(MatrixXd(17,17)) ); | 
|  | CALL_SUBTEST_7( triangular(Matrix<float,Dynamic,Dynamic,RowMajor>(5, 5)) ); | 
|  | } | 
|  | } |