| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE.f See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/QR> | 
 |  | 
 | template<typename Derived1, typename Derived2> | 
 | bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision()) | 
 | { | 
 |   return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon | 
 |                           * std::max(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff())); | 
 | } | 
 |  | 
 | template<typename MatrixType> void product(const MatrixType& m) | 
 | { | 
 |   /* this test covers the following files: | 
 |      Identity.h Product.h | 
 |   */ | 
 |   typedef typename MatrixType::Index Index; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::NonInteger NonInteger; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType; | 
 |   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType; | 
 |   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, | 
 |                          MatrixType::Flags&RowMajorBit?ColMajor:RowMajor> OtherMajorMatrixType; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   // this test relies a lot on Random.h, and there's not much more that we can do | 
 |   // to test it, hence I consider that we will have tested Random.h | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |              m2 = MatrixType::Random(rows, cols), | 
 |              m3(rows, cols), | 
 |              mzero = MatrixType::Zero(rows, cols); | 
 |   RowSquareMatrixType | 
 |              identity = RowSquareMatrixType::Identity(rows, rows), | 
 |              square = RowSquareMatrixType::Random(rows, rows), | 
 |              res = RowSquareMatrixType::Random(rows, rows); | 
 |   ColSquareMatrixType | 
 |              square2 = ColSquareMatrixType::Random(cols, cols), | 
 |              res2 = ColSquareMatrixType::Random(cols, cols); | 
 |   RowVectorType v1 = RowVectorType::Random(rows), | 
 |              v2 = RowVectorType::Random(rows), | 
 |              vzero = RowVectorType::Zero(rows); | 
 |   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); | 
 |   OtherMajorMatrixType tm1 = m1; | 
 |  | 
 |   Scalar s1 = internal::random<Scalar>(); | 
 |  | 
 |   Index r  = internal::random<Index>(0, rows-1), | 
 |         c  = internal::random<Index>(0, cols-1), | 
 |         c2 = internal::random<Index>(0, cols-1); | 
 |  | 
 |   // begin testing Product.h: only associativity for now | 
 |   // (we use Transpose.h but this doesn't count as a test for it) | 
 |   VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2)); | 
 |   m3 = m1; | 
 |   m3 *= m1.transpose() * m2; | 
 |   VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2)); | 
 |   VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2)); | 
 |  | 
 |   // continue testing Product.h: distributivity | 
 |   VERIFY_IS_APPROX(square*(m1 + m2),        square*m1+square*m2); | 
 |   VERIFY_IS_APPROX(square*(m1 - m2),        square*m1-square*m2); | 
 |  | 
 |   // continue testing Product.h: compatibility with ScalarMultiple.h | 
 |   VERIFY_IS_APPROX(s1*(square*m1),          (s1*square)*m1); | 
 |   VERIFY_IS_APPROX(s1*(square*m1),          square*(m1*s1)); | 
 |  | 
 |   // test Product.h together with Identity.h | 
 |   VERIFY_IS_APPROX(v1,                      identity*v1); | 
 |   VERIFY_IS_APPROX(v1.transpose(),          v1.transpose() * identity); | 
 |   // again, test operator() to check const-qualification | 
 |   VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c)); | 
 |  | 
 |   if (rows!=cols) | 
 |      VERIFY_RAISES_ASSERT(m3 = m1*m1); | 
 |  | 
 |   // test the previous tests were not screwed up because operator* returns 0 | 
 |   // (we use the more accurate default epsilon) | 
 |   if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1) | 
 |   { | 
 |     VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1)); | 
 |   } | 
 |  | 
 |   // test optimized operator+= path | 
 |   res = square; | 
 |   res.noalias() += m1 * m2.transpose(); | 
 |   VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); | 
 |   if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1) | 
 |   { | 
 |     VERIFY(areNotApprox(res,square + m2 * m1.transpose())); | 
 |   } | 
 |   vcres = vc2; | 
 |   vcres.noalias() += m1.transpose() * v1; | 
 |   VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1); | 
 |  | 
 |   // test optimized operator-= path | 
 |   res = square; | 
 |   res.noalias() -= m1 * m2.transpose(); | 
 |   VERIFY_IS_APPROX(res, square - (m1 * m2.transpose())); | 
 |   if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1) | 
 |   { | 
 |     VERIFY(areNotApprox(res,square - m2 * m1.transpose())); | 
 |   } | 
 |   vcres = vc2; | 
 |   vcres.noalias() -= m1.transpose() * v1; | 
 |   VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1); | 
 |  | 
 |   tm1 = m1; | 
 |   VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1); | 
 |   VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1); | 
 |  | 
 |   // test submatrix and matrix/vector product | 
 |   for (int i=0; i<rows; ++i) | 
 |     res.row(i) = m1.row(i) * m2.transpose(); | 
 |   VERIFY_IS_APPROX(res, m1 * m2.transpose()); | 
 |   // the other way round: | 
 |   for (int i=0; i<rows; ++i) | 
 |     res.col(i) = m1 * m2.transpose().col(i); | 
 |   VERIFY_IS_APPROX(res, m1 * m2.transpose()); | 
 |  | 
 |   res2 = square2; | 
 |   res2.noalias() += m1.transpose() * m2; | 
 |   VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2); | 
 |   if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1) | 
 |   { | 
 |     VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1)); | 
 |   } | 
 |  | 
 |   VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval()); | 
 |   VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval()); | 
 |  | 
 |   // inner product | 
 |   Scalar x = square2.row(c) * square2.col(c2); | 
 |   VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum()); | 
 | } |