|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "sparse.h" | 
|  |  | 
|  | template<typename SparseMatrixType> void sparse_product(const SparseMatrixType& ref) | 
|  | { | 
|  | typedef typename SparseMatrixType::Index Index; | 
|  | const Index rows = ref.rows(); | 
|  | const Index cols = ref.cols(); | 
|  | typedef typename SparseMatrixType::Scalar Scalar; | 
|  | enum { Flags = SparseMatrixType::Flags }; | 
|  |  | 
|  | double density = std::max(8./(rows*cols), 0.01); | 
|  | typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | 
|  | typedef Matrix<Scalar,Dynamic,1> DenseVector; | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  | Scalar s2 = internal::random<Scalar>(); | 
|  |  | 
|  | // test matrix-matrix product | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | 
|  | DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows); | 
|  | DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows); | 
|  | DenseMatrix refMat5 = DenseMatrix::Random(rows, rows); | 
|  | DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); | 
|  | DenseVector dv1 = DenseVector::Random(rows); | 
|  | SparseMatrixType m2(rows, rows); | 
|  | SparseMatrixType m3(rows, rows); | 
|  | SparseMatrixType m4(rows, rows); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | initSparse<Scalar>(density, refMat3, m3); | 
|  | initSparse<Scalar>(density, refMat4, m4); | 
|  |  | 
|  | int c = internal::random<int>(0,rows-1); | 
|  |  | 
|  | VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); | 
|  | VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); | 
|  | VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1); | 
|  | VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1); | 
|  | VERIFY_IS_APPROX(m4 = s2*m2*m3*s1, refMat4 = s2*refMat2*refMat3*s1); | 
|  |  | 
|  | // sparse * dense | 
|  | VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose()); | 
|  | VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3); | 
|  | VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3)); | 
|  | VERIFY_IS_APPROX(dm4=m2.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2.transpose()*(refMat3+refMat5)*0.5); | 
|  |  | 
|  | // dense * sparse | 
|  | VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); | 
|  | VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); | 
|  | VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); | 
|  |  | 
|  | // sparse * dense and dense * sparse outer product | 
|  | VERIFY_IS_APPROX(m4=m2.col(c)*dv1.transpose(), refMat4=refMat2.col(c)*dv1.transpose()); | 
|  | VERIFY_IS_APPROX(m4=dv1*m2.col(c).transpose(), refMat4=dv1*refMat2.col(c).transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3); | 
|  | } | 
|  |  | 
|  | // test matrix - diagonal product | 
|  | { | 
|  | DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); | 
|  | DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); | 
|  | DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(rows)); | 
|  | SparseMatrixType m2(rows, rows); | 
|  | SparseMatrixType m3(rows, rows); | 
|  | initSparse<Scalar>(density, refM2, m2); | 
|  | initSparse<Scalar>(density, refM3, m3); | 
|  | VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1); | 
|  | VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1); | 
|  | VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2); | 
|  | VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose()); | 
|  | } | 
|  |  | 
|  | // test self adjoint products | 
|  | { | 
|  | DenseMatrix b = DenseMatrix::Random(rows, rows); | 
|  | DenseMatrix x = DenseMatrix::Random(rows, rows); | 
|  | DenseMatrix refX = DenseMatrix::Random(rows, rows); | 
|  | DenseMatrix refUp = DenseMatrix::Zero(rows, rows); | 
|  | DenseMatrix refLo = DenseMatrix::Zero(rows, rows); | 
|  | DenseMatrix refS = DenseMatrix::Zero(rows, rows); | 
|  | SparseMatrixType mUp(rows, rows); | 
|  | SparseMatrixType mLo(rows, rows); | 
|  | SparseMatrixType mS(rows, rows); | 
|  | do { | 
|  | initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); | 
|  | } while (refUp.isZero()); | 
|  | refLo = refUp.transpose().conjugate(); | 
|  | mLo = mUp.transpose().conjugate(); | 
|  | refS = refUp + refLo; | 
|  | refS.diagonal() *= 0.5; | 
|  | mS = mUp + mLo; | 
|  | for (int k=0; k<mS.outerSize(); ++k) | 
|  | for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it) | 
|  | if (it.index() == k) | 
|  | it.valueRef() *= 0.5; | 
|  |  | 
|  | VERIFY_IS_APPROX(refS.adjoint(), refS); | 
|  | VERIFY_IS_APPROX(mS.transpose().conjugate(), mS); | 
|  | VERIFY_IS_APPROX(mS, refS); | 
|  | VERIFY_IS_APPROX(x=mS*b, refX=refS*b); | 
|  |  | 
|  | VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b); | 
|  | VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b); | 
|  | VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b); | 
|  | } | 
|  | } | 
|  |  | 
|  | // New test for Bug in SparseTimeDenseProduct | 
|  | template<typename SparseMatrixType, typename DenseMatrixType> void sparse_product_regression_test() | 
|  | { | 
|  | // This code does not compile with afflicted versions of the bug | 
|  | SparseMatrixType sm1(3,2); | 
|  | DenseMatrixType m2(2,2); | 
|  | sm1.setZero(); | 
|  | m2.setZero(); | 
|  |  | 
|  | DenseMatrixType m3 = sm1*m2; | 
|  |  | 
|  |  | 
|  | // This code produces a segfault with afflicted versions of another SparseTimeDenseProduct | 
|  | // bug | 
|  |  | 
|  | SparseMatrixType sm2(20000,2); | 
|  | sm2.setZero(); | 
|  | DenseMatrixType m4(sm2*m2); | 
|  |  | 
|  | VERIFY_IS_APPROX( m4(0,0), 0.0 ); | 
|  | } | 
|  |  | 
|  | void test_sparse_product() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(8, 8)) ); | 
|  | CALL_SUBTEST_2( sparse_product(SparseMatrix<std::complex<double> >(16, 16)) ); | 
|  | CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(33, 33)) ); | 
|  |  | 
|  | CALL_SUBTEST_3( sparse_product(DynamicSparseMatrix<double>(8, 8)) ); | 
|  |  | 
|  | CALL_SUBTEST_4( (sparse_product_regression_test<SparseMatrix<double,RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()) ); | 
|  | } | 
|  | } |