|  | // This file is triangularView of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  |  | 
|  |  | 
|  | template<typename MatrixType> void triangular_square(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | RealScalar largerEps = 10*test_precision<RealScalar>(); | 
|  |  | 
|  | typename MatrixType::Index rows = m.rows(); | 
|  | typename MatrixType::Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols), | 
|  | m4(rows, cols), | 
|  | r1(rows, cols), | 
|  | r2(rows, cols), | 
|  | mzero = MatrixType::Zero(rows, cols), | 
|  | mones = MatrixType::Ones(rows, cols), | 
|  | identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | 
|  | ::Identity(rows, rows), | 
|  | square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | 
|  | ::Random(rows, rows); | 
|  | VectorType v1 = VectorType::Random(rows), | 
|  | v2 = VectorType::Random(rows), | 
|  | vzero = VectorType::Zero(rows); | 
|  |  | 
|  | MatrixType m1up = m1.template triangularView<Upper>(); | 
|  | MatrixType m2up = m2.template triangularView<Upper>(); | 
|  |  | 
|  | if (rows*cols>1) | 
|  | { | 
|  | VERIFY(m1up.isUpperTriangular()); | 
|  | VERIFY(m2up.transpose().isLowerTriangular()); | 
|  | VERIFY(!m2.isLowerTriangular()); | 
|  | } | 
|  |  | 
|  | //   VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2); | 
|  |  | 
|  | // test overloaded operator+= | 
|  | r1.setZero(); | 
|  | r2.setZero(); | 
|  | r1.template triangularView<Upper>() +=  m1; | 
|  | r2 += m1up; | 
|  | VERIFY_IS_APPROX(r1,r2); | 
|  |  | 
|  | // test overloaded operator= | 
|  | m1.setZero(); | 
|  | m1.template triangularView<Upper>() = m2.transpose() + m2; | 
|  | m3 = m2.transpose() + m2; | 
|  | VERIFY_IS_APPROX(m3.template triangularView<Lower>().transpose().toDenseMatrix(), m1); | 
|  |  | 
|  | // test overloaded operator= | 
|  | m1.setZero(); | 
|  | m1.template triangularView<Lower>() = m2.transpose() + m2; | 
|  | VERIFY_IS_APPROX(m3.template triangularView<Lower>().toDenseMatrix(), m1); | 
|  |  | 
|  | VERIFY_IS_APPROX(m3.template triangularView<Lower>().conjugate().toDenseMatrix(), | 
|  | m3.conjugate().template triangularView<Lower>().toDenseMatrix()); | 
|  |  | 
|  | m1 = MatrixType::Random(rows, cols); | 
|  | for (int i=0; i<rows; ++i) | 
|  | while (internal::abs2(m1(i,i))<1e-1) m1(i,i) = internal::random<Scalar>(); | 
|  |  | 
|  | Transpose<MatrixType> trm4(m4); | 
|  | // test back and forward subsitution with a vector as the rhs | 
|  | m3 = m1.template triangularView<Upper>(); | 
|  | VERIFY(v2.isApprox(m3.adjoint() * (m1.adjoint().template triangularView<Lower>().solve(v2)), largerEps)); | 
|  | m3 = m1.template triangularView<Lower>(); | 
|  | VERIFY(v2.isApprox(m3.transpose() * (m1.transpose().template triangularView<Upper>().solve(v2)), largerEps)); | 
|  | m3 = m1.template triangularView<Upper>(); | 
|  | VERIFY(v2.isApprox(m3 * (m1.template triangularView<Upper>().solve(v2)), largerEps)); | 
|  | m3 = m1.template triangularView<Lower>(); | 
|  | VERIFY(v2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView<Lower>().solve(v2)), largerEps)); | 
|  |  | 
|  | // test back and forward subsitution with a matrix as the rhs | 
|  | m3 = m1.template triangularView<Upper>(); | 
|  | VERIFY(m2.isApprox(m3.adjoint() * (m1.adjoint().template triangularView<Lower>().solve(m2)), largerEps)); | 
|  | m3 = m1.template triangularView<Lower>(); | 
|  | VERIFY(m2.isApprox(m3.transpose() * (m1.transpose().template triangularView<Upper>().solve(m2)), largerEps)); | 
|  | m3 = m1.template triangularView<Upper>(); | 
|  | VERIFY(m2.isApprox(m3 * (m1.template triangularView<Upper>().solve(m2)), largerEps)); | 
|  | m3 = m1.template triangularView<Lower>(); | 
|  | VERIFY(m2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView<Lower>().solve(m2)), largerEps)); | 
|  |  | 
|  | // check M * inv(L) using in place API | 
|  | m4 = m3; | 
|  | m3.transpose().template triangularView<Eigen::Upper>().solveInPlace(trm4); | 
|  | VERIFY(m4.cwiseAbs().isIdentity(test_precision<RealScalar>())); | 
|  |  | 
|  | // check M * inv(U) using in place API | 
|  | m3 = m1.template triangularView<Upper>(); | 
|  | m4 = m3; | 
|  | m3.transpose().template triangularView<Eigen::Lower>().solveInPlace(trm4); | 
|  | VERIFY(m4.cwiseAbs().isIdentity(test_precision<RealScalar>())); | 
|  |  | 
|  | // check solve with unit diagonal | 
|  | m3 = m1.template triangularView<UnitUpper>(); | 
|  | VERIFY(m2.isApprox(m3 * (m1.template triangularView<UnitUpper>().solve(m2)), largerEps)); | 
|  |  | 
|  | //   VERIFY((  m1.template triangularView<Upper>() | 
|  | //           * m2.template triangularView<Upper>()).isUpperTriangular()); | 
|  |  | 
|  | // test swap | 
|  | m1.setOnes(); | 
|  | m2.setZero(); | 
|  | m2.template triangularView<Upper>().swap(m1); | 
|  | m3.setZero(); | 
|  | m3.template triangularView<Upper>().setOnes(); | 
|  | VERIFY_IS_APPROX(m2,m3); | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename MatrixType> void triangular_rect(const MatrixType& m) | 
|  | { | 
|  | typedef const typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | enum { Rows =  MatrixType::RowsAtCompileTime, Cols =  MatrixType::ColsAtCompileTime }; | 
|  | typedef Matrix<Scalar, Rows, 1> VectorType; | 
|  | typedef Matrix<Scalar, Rows, Rows> RMatrixType; | 
|  |  | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols), | 
|  | m4(rows, cols), | 
|  | r1(rows, cols), | 
|  | r2(rows, cols), | 
|  | mzero = MatrixType::Zero(rows, cols), | 
|  | mones = MatrixType::Ones(rows, cols); | 
|  | RMatrixType identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | 
|  | ::Identity(rows, rows), | 
|  | square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | 
|  | ::Random(rows, rows); | 
|  | VectorType v1 = VectorType::Random(rows), | 
|  | v2 = VectorType::Random(rows), | 
|  | vzero = VectorType::Zero(rows); | 
|  |  | 
|  | MatrixType m1up = m1.template triangularView<Upper>(); | 
|  | MatrixType m2up = m2.template triangularView<Upper>(); | 
|  |  | 
|  | if (rows*cols>1) | 
|  | { | 
|  | VERIFY(m1up.isUpperTriangular()); | 
|  | VERIFY(m2up.transpose().isLowerTriangular()); | 
|  | VERIFY(!m2.isLowerTriangular()); | 
|  | } | 
|  |  | 
|  | // test overloaded operator+= | 
|  | r1.setZero(); | 
|  | r2.setZero(); | 
|  | r1.template triangularView<Upper>() +=  m1; | 
|  | r2 += m1up; | 
|  | VERIFY_IS_APPROX(r1,r2); | 
|  |  | 
|  | // test overloaded operator= | 
|  | m1.setZero(); | 
|  | m1.template triangularView<Upper>() = 3 * m2; | 
|  | m3 = 3 * m2; | 
|  | VERIFY_IS_APPROX(m3.template triangularView<Upper>().toDenseMatrix(), m1); | 
|  |  | 
|  |  | 
|  | m1.setZero(); | 
|  | m1.template triangularView<Lower>() = 3 * m2; | 
|  | VERIFY_IS_APPROX(m3.template triangularView<Lower>().toDenseMatrix(), m1); | 
|  |  | 
|  | m1.setZero(); | 
|  | m1.template triangularView<StrictlyUpper>() = 3 * m2; | 
|  | VERIFY_IS_APPROX(m3.template triangularView<StrictlyUpper>().toDenseMatrix(), m1); | 
|  |  | 
|  |  | 
|  | m1.setZero(); | 
|  | m1.template triangularView<StrictlyLower>() = 3 * m2; | 
|  | VERIFY_IS_APPROX(m3.template triangularView<StrictlyLower>().toDenseMatrix(), m1); | 
|  | m1.setRandom(); | 
|  | m2 = m1.template triangularView<Upper>(); | 
|  | VERIFY(m2.isUpperTriangular()); | 
|  | VERIFY(!m2.isLowerTriangular()); | 
|  | m2 = m1.template triangularView<StrictlyUpper>(); | 
|  | VERIFY(m2.isUpperTriangular()); | 
|  | VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); | 
|  | m2 = m1.template triangularView<UnitUpper>(); | 
|  | VERIFY(m2.isUpperTriangular()); | 
|  | m2.diagonal().array() -= Scalar(1); | 
|  | VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); | 
|  | m2 = m1.template triangularView<Lower>(); | 
|  | VERIFY(m2.isLowerTriangular()); | 
|  | VERIFY(!m2.isUpperTriangular()); | 
|  | m2 = m1.template triangularView<StrictlyLower>(); | 
|  | VERIFY(m2.isLowerTriangular()); | 
|  | VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); | 
|  | m2 = m1.template triangularView<UnitLower>(); | 
|  | VERIFY(m2.isLowerTriangular()); | 
|  | m2.diagonal().array() -= Scalar(1); | 
|  | VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); | 
|  | // test swap | 
|  | m1.setOnes(); | 
|  | m2.setZero(); | 
|  | m2.template triangularView<Upper>().swap(m1); | 
|  | m3.setZero(); | 
|  | m3.template triangularView<Upper>().setOnes(); | 
|  | VERIFY_IS_APPROX(m2,m3); | 
|  | } | 
|  |  | 
|  | void bug_159() | 
|  | { | 
|  | Matrix3d m = Matrix3d::Random().triangularView<Lower>(); | 
|  | } | 
|  |  | 
|  | void test_triangular() | 
|  | { | 
|  | for(int i = 0; i < g_repeat ; i++) | 
|  | { | 
|  | int r = internal::random<int>(2,20); EIGEN_UNUSED_VARIABLE(r); | 
|  | int c = internal::random<int>(2,20); EIGEN_UNUSED_VARIABLE(c); | 
|  |  | 
|  | CALL_SUBTEST_1( triangular_square(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( triangular_square(Matrix<float, 2, 2>()) ); | 
|  | CALL_SUBTEST_3( triangular_square(Matrix3d()) ); | 
|  | CALL_SUBTEST_4( triangular_square(Matrix<std::complex<float>,8, 8>()) ); | 
|  | CALL_SUBTEST_5( triangular_square(MatrixXcd(r,r)) ); | 
|  | CALL_SUBTEST_6( triangular_square(Matrix<float,Dynamic,Dynamic,RowMajor>(r, r)) ); | 
|  |  | 
|  | CALL_SUBTEST_7( triangular_rect(Matrix<float, 4, 5>()) ); | 
|  | CALL_SUBTEST_8( triangular_rect(Matrix<double, 6, 2>()) ); | 
|  | CALL_SUBTEST_9( triangular_rect(MatrixXcf(r, c)) ); | 
|  | CALL_SUBTEST_5( triangular_rect(MatrixXcd(r, c)) ); | 
|  | CALL_SUBTEST_6( triangular_rect(Matrix<float,Dynamic,Dynamic,RowMajor>(r, c)) ); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_1( bug_159() ); | 
|  | } |