|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_MATRIX_EXPONENTIAL | 
|  | #define EIGEN_MATRIX_EXPONENTIAL | 
|  |  | 
|  | #ifdef _MSC_VER | 
|  | template <typename Scalar> Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /** \ingroup MatrixFunctions_Module | 
|  | * \brief Class for computing the matrix exponential. | 
|  | * \tparam MatrixType type of the argument of the exponential, | 
|  | * expected to be an instantiation of the Matrix class template. | 
|  | */ | 
|  | template <typename MatrixType> | 
|  | class MatrixExponential { | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** \brief Constructor. | 
|  | * | 
|  | * The class stores a reference to \p M, so it should not be | 
|  | * changed (or destroyed) before compute() is called. | 
|  | * | 
|  | * \param[in] M  matrix whose exponential is to be computed. | 
|  | */ | 
|  | MatrixExponential(const MatrixType &M); | 
|  |  | 
|  | /** \brief Computes the matrix exponential. | 
|  | * | 
|  | * \param[out] result  the matrix exponential of \p M in the constructor. | 
|  | */ | 
|  | template <typename ResultType> | 
|  | void compute(ResultType &result); | 
|  |  | 
|  | private: | 
|  |  | 
|  | // Prevent copying | 
|  | MatrixExponential(const MatrixExponential&); | 
|  | MatrixExponential& operator=(const MatrixExponential&); | 
|  |  | 
|  | /** \brief Compute the (3,3)-Padé approximant to the exponential. | 
|  | * | 
|  | *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé | 
|  | *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. | 
|  | * | 
|  | *  \param[in] A   Argument of matrix exponential | 
|  | */ | 
|  | void pade3(const MatrixType &A); | 
|  |  | 
|  | /** \brief Compute the (5,5)-Padé approximant to the exponential. | 
|  | * | 
|  | *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé | 
|  | *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. | 
|  | * | 
|  | *  \param[in] A   Argument of matrix exponential | 
|  | */ | 
|  | void pade5(const MatrixType &A); | 
|  |  | 
|  | /** \brief Compute the (7,7)-Padé approximant to the exponential. | 
|  | * | 
|  | *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé | 
|  | *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. | 
|  | * | 
|  | *  \param[in] A   Argument of matrix exponential | 
|  | */ | 
|  | void pade7(const MatrixType &A); | 
|  |  | 
|  | /** \brief Compute the (9,9)-Padé approximant to the exponential. | 
|  | * | 
|  | *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé | 
|  | *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. | 
|  | * | 
|  | *  \param[in] A   Argument of matrix exponential | 
|  | */ | 
|  | void pade9(const MatrixType &A); | 
|  |  | 
|  | /** \brief Compute the (13,13)-Padé approximant to the exponential. | 
|  | * | 
|  | *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé | 
|  | *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. | 
|  | * | 
|  | *  \param[in] A   Argument of matrix exponential | 
|  | */ | 
|  | void pade13(const MatrixType &A); | 
|  |  | 
|  | /** \brief Compute Padé approximant to the exponential. | 
|  | * | 
|  | * Computes \c m_U, \c m_V and \c m_squarings such that | 
|  | * \f$ (V+U)(V-U)^{-1} \f$ is a Padé of | 
|  | * \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The | 
|  | * degree of the Padé approximant and the value of | 
|  | * squarings are chosen such that the approximation error is no | 
|  | * more than the round-off error. | 
|  | * | 
|  | * The argument of this function should correspond with the (real | 
|  | * part of) the entries of \c m_M.  It is used to select the | 
|  | * correct implementation using overloading. | 
|  | */ | 
|  | void computeUV(double); | 
|  |  | 
|  | /** \brief Compute Padé approximant to the exponential. | 
|  | * | 
|  | *  \sa computeUV(double); | 
|  | */ | 
|  | void computeUV(float); | 
|  |  | 
|  | typedef typename internal::traits<MatrixType>::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | /** \brief Reference to matrix whose exponential is to be computed. */ | 
|  | typename internal::nested<MatrixType>::type m_M; | 
|  |  | 
|  | /** \brief Even-degree terms in numerator of Padé approximant. */ | 
|  | MatrixType m_U; | 
|  |  | 
|  | /** \brief Odd-degree terms in numerator of Padé approximant. */ | 
|  | MatrixType m_V; | 
|  |  | 
|  | /** \brief Used for temporary storage. */ | 
|  | MatrixType m_tmp1; | 
|  |  | 
|  | /** \brief Used for temporary storage. */ | 
|  | MatrixType m_tmp2; | 
|  |  | 
|  | /** \brief Identity matrix of the same size as \c m_M. */ | 
|  | MatrixType m_Id; | 
|  |  | 
|  | /** \brief Number of squarings required in the last step. */ | 
|  | int m_squarings; | 
|  |  | 
|  | /** \brief L1 norm of m_M. */ | 
|  | float m_l1norm; | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType> | 
|  | MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) : | 
|  | m_M(M), | 
|  | m_U(M.rows(),M.cols()), | 
|  | m_V(M.rows(),M.cols()), | 
|  | m_tmp1(M.rows(),M.cols()), | 
|  | m_tmp2(M.rows(),M.cols()), | 
|  | m_Id(MatrixType::Identity(M.rows(), M.cols())), | 
|  | m_squarings(0), | 
|  | m_l1norm(static_cast<float>(M.cwiseAbs().colwise().sum().maxCoeff())) | 
|  | { | 
|  | /* empty body */ | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | template <typename ResultType> | 
|  | void MatrixExponential<MatrixType>::compute(ResultType &result) | 
|  | { | 
|  | computeUV(RealScalar()); | 
|  | m_tmp1 = m_U + m_V;	// numerator of Pade approximant | 
|  | m_tmp2 = -m_U + m_V;	// denominator of Pade approximant | 
|  | result = m_tmp2.partialPivLu().solve(m_tmp1); | 
|  | for (int i=0; i<m_squarings; i++) | 
|  | result *= result;		// undo scaling by repeated squaring | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A) | 
|  | { | 
|  | const Scalar b[] = {120., 60., 12., 1.}; | 
|  | m_tmp1.noalias() = A * A; | 
|  | m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id; | 
|  | m_U.noalias() = A * m_tmp2; | 
|  | m_V = b[2]*m_tmp1 + b[0]*m_Id; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A) | 
|  | { | 
|  | const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.}; | 
|  | MatrixType A2 = A * A; | 
|  | m_tmp1.noalias() = A2 * A2; | 
|  | m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id; | 
|  | m_U.noalias() = A * m_tmp2; | 
|  | m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A) | 
|  | { | 
|  | const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.}; | 
|  | MatrixType A2 = A * A; | 
|  | MatrixType A4 = A2 * A2; | 
|  | m_tmp1.noalias() = A4 * A2; | 
|  | m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; | 
|  | m_U.noalias() = A * m_tmp2; | 
|  | m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A) | 
|  | { | 
|  | const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240., | 
|  | 2162160., 110880., 3960., 90., 1.}; | 
|  | MatrixType A2 = A * A; | 
|  | MatrixType A4 = A2 * A2; | 
|  | MatrixType A6 = A4 * A2; | 
|  | m_tmp1.noalias() = A6 * A2; | 
|  | m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; | 
|  | m_U.noalias() = A * m_tmp2; | 
|  | m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A) | 
|  | { | 
|  | const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600., | 
|  | 1187353796428800., 129060195264000., 10559470521600., 670442572800., | 
|  | 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.}; | 
|  | MatrixType A2 = A * A; | 
|  | MatrixType A4 = A2 * A2; | 
|  | m_tmp1.noalias() = A4 * A2; | 
|  | m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage | 
|  | m_tmp2.noalias() = m_tmp1 * m_V; | 
|  | m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; | 
|  | m_U.noalias() = A * m_tmp2; | 
|  | m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2; | 
|  | m_V.noalias() = m_tmp1 * m_tmp2; | 
|  | m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void MatrixExponential<MatrixType>::computeUV(float) | 
|  | { | 
|  | if (m_l1norm < 4.258730016922831e-001) { | 
|  | pade3(m_M); | 
|  | } else if (m_l1norm < 1.880152677804762e+000) { | 
|  | pade5(m_M); | 
|  | } else { | 
|  | const float maxnorm = 3.925724783138660f; | 
|  | m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm))); | 
|  | MatrixType A = m_M / std::pow(Scalar(2), Scalar(static_cast<RealScalar>(m_squarings))); | 
|  | pade7(A); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void MatrixExponential<MatrixType>::computeUV(double) | 
|  | { | 
|  | if (m_l1norm < 1.495585217958292e-002) { | 
|  | pade3(m_M); | 
|  | } else if (m_l1norm < 2.539398330063230e-001) { | 
|  | pade5(m_M); | 
|  | } else if (m_l1norm < 9.504178996162932e-001) { | 
|  | pade7(m_M); | 
|  | } else if (m_l1norm < 2.097847961257068e+000) { | 
|  | pade9(m_M); | 
|  | } else { | 
|  | const double maxnorm = 5.371920351148152; | 
|  | m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm))); | 
|  | MatrixType A = m_M / std::pow(Scalar(2), Scalar(m_squarings)); | 
|  | pade13(A); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \ingroup MatrixFunctions_Module | 
|  | * | 
|  | * \brief Proxy for the matrix exponential of some matrix (expression). | 
|  | * | 
|  | * \tparam Derived  Type of the argument to the matrix exponential. | 
|  | * | 
|  | * This class holds the argument to the matrix exponential until it | 
|  | * is assigned or evaluated for some other reason (so the argument | 
|  | * should not be changed in the meantime). It is the return type of | 
|  | * MatrixBase::exp() and most of the time this is the only way it is | 
|  | * used. | 
|  | */ | 
|  | template<typename Derived> struct MatrixExponentialReturnValue | 
|  | : public ReturnByValue<MatrixExponentialReturnValue<Derived> > | 
|  | { | 
|  | typedef typename Derived::Index Index; | 
|  | public: | 
|  | /** \brief Constructor. | 
|  | * | 
|  | * \param[in] src %Matrix (expression) forming the argument of the | 
|  | * matrix exponential. | 
|  | */ | 
|  | MatrixExponentialReturnValue(const Derived& src) : m_src(src) { } | 
|  |  | 
|  | /** \brief Compute the matrix exponential. | 
|  | * | 
|  | * \param[out] result the matrix exponential of \p src in the | 
|  | * constructor. | 
|  | */ | 
|  | template <typename ResultType> | 
|  | inline void evalTo(ResultType& result) const | 
|  | { | 
|  | const typename Derived::PlainObject srcEvaluated = m_src.eval(); | 
|  | MatrixExponential<typename Derived::PlainObject> me(srcEvaluated); | 
|  | me.compute(result); | 
|  | } | 
|  |  | 
|  | Index rows() const { return m_src.rows(); } | 
|  | Index cols() const { return m_src.cols(); } | 
|  |  | 
|  | protected: | 
|  | const Derived& m_src; | 
|  | private: | 
|  | MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&); | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  | template<typename Derived> | 
|  | struct traits<MatrixExponentialReturnValue<Derived> > | 
|  | { | 
|  | typedef typename Derived::PlainObject ReturnType; | 
|  | }; | 
|  | } | 
|  |  | 
|  | template <typename Derived> | 
|  | const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const | 
|  | { | 
|  | eigen_assert(rows() == cols()); | 
|  | return MatrixExponentialReturnValue<Derived>(derived()); | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_MATRIX_EXPONENTIAL |