blob: 530585852bdc3e031b88502b10d9ab0415171940 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CHOLMODSUPPORT_LEGACY_H
#define EIGEN_CHOLMODSUPPORT_LEGACY_H
namespace internal {
template<typename Scalar, typename CholmodType>
void cholmod_configure_matrix_legacy(CholmodType& mat)
{
if (internal::is_same<Scalar,float>::value)
{
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_SINGLE;
}
else if (internal::is_same<Scalar,double>::value)
{
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_DOUBLE;
}
else if (internal::is_same<Scalar,std::complex<float> >::value)
{
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_SINGLE;
}
else if (internal::is_same<Scalar,std::complex<double> >::value)
{
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_DOUBLE;
}
else
{
eigen_assert(false && "Scalar type not supported by CHOLMOD");
}
}
template<typename _MatrixType>
cholmod_sparse cholmod_map_eigen_to_sparse(_MatrixType& mat)
{
typedef typename _MatrixType::Scalar Scalar;
cholmod_sparse res;
res.nzmax = mat.nonZeros();
res.nrow = mat.rows();;
res.ncol = mat.cols();
res.p = mat._outerIndexPtr();
res.i = mat._innerIndexPtr();
res.x = mat._valuePtr();
res.xtype = CHOLMOD_REAL;
res.itype = CHOLMOD_INT;
res.sorted = 1;
res.packed = 1;
res.dtype = 0;
res.stype = -1;
internal::cholmod_configure_matrix_legacy<Scalar>(res);
if (_MatrixType::Flags & SelfAdjoint)
{
if (_MatrixType::Flags & Upper)
res.stype = 1;
else if (_MatrixType::Flags & Lower)
res.stype = -1;
else
res.stype = 0;
}
else
res.stype = -1; // by default we consider the lower part
return res;
}
template<typename Derived>
cholmod_dense cholmod_map_eigen_to_dense(MatrixBase<Derived>& mat)
{
EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
typedef typename Derived::Scalar Scalar;
cholmod_dense res;
res.nrow = mat.rows();
res.ncol = mat.cols();
res.nzmax = res.nrow * res.ncol;
res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
res.x = mat.derived().data();
res.z = 0;
internal::cholmod_configure_matrix_legacy<Scalar>(res);
return res;
}
template<typename Scalar, int Flags, typename Index>
MappedSparseMatrix<Scalar,Flags,Index> map_cholmod_sparse_to_eigen(cholmod_sparse& cm)
{
return MappedSparseMatrix<Scalar,Flags,Index>
(cm.nrow, cm.ncol, reinterpret_cast<Index*>(cm.p)[cm.ncol],
reinterpret_cast<Index*>(cm.p), reinterpret_cast<Index*>(cm.i),reinterpret_cast<Scalar*>(cm.x) );
}
} // namespace internal
template<typename _MatrixType>
class SparseLLT<_MatrixType, Cholmod> : public SparseLLT<_MatrixType>
{
protected:
typedef SparseLLT<_MatrixType> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
typedef typename Base::CholMatrixType CholMatrixType;
using Base::MatrixLIsDirty;
using Base::SupernodalFactorIsDirty;
using Base::m_flags;
using Base::m_matrix;
using Base::m_status;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Index Index;
SparseLLT(int flags = 0)
: Base(flags), m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
}
SparseLLT(const MatrixType& matrix, int flags = 0)
: Base(flags), m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
compute(matrix);
}
~SparseLLT()
{
if (m_cholmodFactor)
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
cholmod_finish(&m_cholmod);
}
inline const CholMatrixType& matrixL() const;
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &b) const;
template<typename Rhs>
inline const internal::solve_retval<SparseLLT<MatrixType, Cholmod>, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(true && "SparseLLT is not initialized.");
return internal::solve_retval<SparseLLT<MatrixType, Cholmod>, Rhs>(*this, b.derived());
}
void compute(const MatrixType& matrix);
inline Index cols() const { return m_matrix.cols(); }
inline Index rows() const { return m_matrix.rows(); }
inline const cholmod_factor* cholmodFactor() const
{ return m_cholmodFactor; }
inline cholmod_common* cholmodCommon() const
{ return &m_cholmod; }
bool succeeded() const;
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
};
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<SparseLLT<_MatrixType, Cholmod>, Rhs>
: solve_retval_base<SparseLLT<_MatrixType, Cholmod>, Rhs>
{
typedef SparseLLT<_MatrixType, Cholmod> SpLLTDecType;
EIGEN_MAKE_SOLVE_HELPERS(SpLLTDecType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
//Index size = dec().cholmodFactor()->n;
eigen_assert((Index)dec().cholmodFactor()->n==rhs().rows());
cholmod_factor* cholmodFactor = const_cast<cholmod_factor*>(dec().cholmodFactor());
cholmod_common* cholmodCommon = const_cast<cholmod_common*>(dec().cholmodCommon());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(rhs().const_cast_derived());
cholmod_dense* x = cholmod_solve(CHOLMOD_A, cholmodFactor, &cdb, cholmodCommon);
dst = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x), rhs().rows());
cholmod_free_dense(&x, cholmodCommon);
}
};
} // namespace internal
template<typename _MatrixType>
void SparseLLT<_MatrixType,Cholmod>::compute(const _MatrixType& a)
{
if (m_cholmodFactor)
{
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
m_cholmodFactor = 0;
}
cholmod_sparse A = internal::cholmod_map_eigen_to_sparse(const_cast<_MatrixType&>(a));
// m_cholmod.supernodal = CHOLMOD_AUTO;
// TODO
// if (m_flags&IncompleteFactorization)
// {
// m_cholmod.nmethods = 1;
// m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
// m_cholmod.postorder = 0;
// }
// else
// {
// m_cholmod.nmethods = 1;
// m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
// m_cholmod.postorder = 0;
// }
// m_cholmod.final_ll = 1;
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
}
// TODO
template<typename _MatrixType>
bool SparseLLT<_MatrixType,Cholmod>::succeeded() const
{ return true; }
template<typename _MatrixType>
inline const typename SparseLLT<_MatrixType,Cholmod>::CholMatrixType&
SparseLLT<_MatrixType,Cholmod>::matrixL() const
{
if (m_status & MatrixLIsDirty)
{
eigen_assert(!(m_status & SupernodalFactorIsDirty));
cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
const_cast<typename Base::CholMatrixType&>(m_matrix) =
internal::map_cholmod_sparse_to_eigen<Scalar,ColMajor,Index>(*cmRes);
free(cmRes);
m_status = (m_status & ~MatrixLIsDirty);
}
return m_matrix;
}
template<typename _MatrixType>
template<typename Derived>
bool SparseLLT<_MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
{
//Index size = m_cholmodFactor->n;
eigen_assert((Index)m_cholmodFactor->n==b.rows());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(b);
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
eigen_assert(x && "Eigen: cholmod_solve failed.");
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
cholmod_free_dense(&x, &m_cholmod);
return true;
}
template<typename _MatrixType>
class SparseLDLT<_MatrixType,Cholmod> : public SparseLDLT<_MatrixType>
{
protected:
typedef SparseLDLT<_MatrixType> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
using Base::MatrixLIsDirty;
using Base::SupernodalFactorIsDirty;
using Base::m_flags;
using Base::m_matrix;
using Base::m_status;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Index Index;
SparseLDLT(int flags = 0)
: Base(flags), m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
}
SparseLDLT(const _MatrixType& matrix, int flags = 0)
: Base(flags), m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
compute(matrix);
}
~SparseLDLT()
{
if (m_cholmodFactor)
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
cholmod_finish(&m_cholmod);
}
inline const typename Base::CholMatrixType& matrixL(void) const;
template<typename Derived>
void solveInPlace(MatrixBase<Derived> &b) const;
template<typename Rhs>
inline const internal::solve_retval<SparseLDLT<MatrixType, Cholmod>, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(true && "SparseLDLT is not initialized.");
return internal::solve_retval<SparseLDLT<MatrixType, Cholmod>, Rhs>(*this, b.derived());
}
void compute(const _MatrixType& matrix);
inline Index cols() const { return m_matrix.cols(); }
inline Index rows() const { return m_matrix.rows(); }
inline const cholmod_factor* cholmodFactor() const
{ return m_cholmodFactor; }
inline cholmod_common* cholmodCommon() const
{ return &m_cholmod; }
bool succeeded() const;
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
};
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<SparseLDLT<_MatrixType, Cholmod>, Rhs>
: solve_retval_base<SparseLDLT<_MatrixType, Cholmod>, Rhs>
{
typedef SparseLDLT<_MatrixType, Cholmod> SpLDLTDecType;
EIGEN_MAKE_SOLVE_HELPERS(SpLDLTDecType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
//Index size = dec().cholmodFactor()->n;
eigen_assert((Index)dec().cholmodFactor()->n==rhs().rows());
cholmod_factor* cholmodFactor = const_cast<cholmod_factor*>(dec().cholmodFactor());
cholmod_common* cholmodCommon = const_cast<cholmod_common*>(dec().cholmodCommon());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(rhs().const_cast_derived());
cholmod_dense* x = cholmod_solve(CHOLMOD_LDLt, cholmodFactor, &cdb, cholmodCommon);
dst = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x), rhs().rows());
cholmod_free_dense(&x, cholmodCommon);
}
};
} // namespace internal
template<typename _MatrixType>
void SparseLDLT<_MatrixType,Cholmod>::compute(const _MatrixType& a)
{
if (m_cholmodFactor)
{
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
m_cholmodFactor = 0;
}
cholmod_sparse A = internal::cholmod_map_eigen_to_sparse(const_cast<_MatrixType&>(a));
//m_cholmod.supernodal = CHOLMOD_AUTO;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
//m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
// TODO
if (m_flags & IncompleteFactorization)
{
m_cholmod.nmethods = 1;
//m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
m_cholmod.method[0].ordering = CHOLMOD_COLAMD;
m_cholmod.postorder = 1;
}
else
{
m_cholmod.nmethods = 1;
m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
m_cholmod.postorder = 0;
}
m_cholmod.final_ll = 0;
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
}
// TODO
template<typename _MatrixType>
bool SparseLDLT<_MatrixType,Cholmod>::succeeded() const
{ return true; }
template<typename _MatrixType>
inline const typename SparseLDLT<_MatrixType>::CholMatrixType&
SparseLDLT<_MatrixType,Cholmod>::matrixL() const
{
if (m_status & MatrixLIsDirty)
{
eigen_assert(!(m_status & SupernodalFactorIsDirty));
cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
const_cast<typename Base::CholMatrixType&>(m_matrix) = MappedSparseMatrix<Scalar>(*cmRes);
free(cmRes);
m_status = (m_status & ~MatrixLIsDirty);
}
return m_matrix;
}
template<typename _MatrixType>
template<typename Derived>
void SparseLDLT<_MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
{
//Index size = m_cholmodFactor->n;
eigen_assert((Index)m_cholmodFactor->n == b.rows());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(b);
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
cholmod_free_dense(&x, &m_cholmod);
}
#endif // EIGEN_CHOLMODSUPPORT_LEGACY_H