| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| |
| template<typename MatrixType> void syrk(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> Rhs1; |
| typedef Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> Rhs2; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic,RowMajor> Rhs3; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols); |
| |
| Rhs1 rhs1 = Rhs1::Random(internal::random<int>(1,320), cols); |
| Rhs2 rhs2 = Rhs2::Random(rows, internal::random<int>(1,320)); |
| Rhs3 rhs3 = Rhs3::Random(internal::random<int>(1,320), rows); |
| |
| Scalar s1 = internal::random<Scalar>(); |
| |
| Index c = internal::random<Index>(0,cols-1); |
| |
| m2.setZero(); |
| VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(rhs2,s1)._expression()), |
| ((s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Lower>().toDenseMatrix())); |
| |
| m2.setZero(); |
| VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs2,s1)._expression(), |
| (s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Upper>().toDenseMatrix()); |
| |
| m2.setZero(); |
| VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs1.adjoint(),s1)._expression(), |
| (s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Lower>().toDenseMatrix()); |
| |
| m2.setZero(); |
| VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs1.adjoint(),s1)._expression(), |
| (s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Upper>().toDenseMatrix()); |
| |
| m2.setZero(); |
| VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs3.adjoint(),s1)._expression(), |
| (s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Lower>().toDenseMatrix()); |
| |
| m2.setZero(); |
| VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs3.adjoint(),s1)._expression(), |
| (s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Upper>().toDenseMatrix()); |
| |
| m2.setZero(); |
| VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(m1.col(c),s1)._expression()), |
| ((s1 * m1.col(c) * m1.col(c).adjoint()).eval().template triangularView<Lower>().toDenseMatrix())); |
| |
| m2.setZero(); |
| VERIFY_IS_APPROX((m2.template selfadjointView<Upper>().rankUpdate(m1.col(c),s1)._expression()), |
| ((s1 * m1.col(c) * m1.col(c).adjoint()).eval().template triangularView<Upper>().toDenseMatrix())); |
| |
| m2.setZero(); |
| VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(m1.col(c).conjugate(),s1)._expression()), |
| ((s1 * m1.col(c).conjugate() * m1.col(c).conjugate().adjoint()).eval().template triangularView<Lower>().toDenseMatrix())); |
| |
| m2.setZero(); |
| VERIFY_IS_APPROX((m2.template selfadjointView<Upper>().rankUpdate(m1.col(c).conjugate(),s1)._expression()), |
| ((s1 * m1.col(c).conjugate() * m1.col(c).conjugate().adjoint()).eval().template triangularView<Upper>().toDenseMatrix())); |
| |
| m2.setZero(); |
| VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(m1.row(c),s1)._expression()), |
| ((s1 * m1.row(c).transpose() * m1.row(c).transpose().adjoint()).eval().template triangularView<Lower>().toDenseMatrix())); |
| |
| m2.setZero(); |
| VERIFY_IS_APPROX((m2.template selfadjointView<Upper>().rankUpdate(m1.row(c).adjoint(),s1)._expression()), |
| ((s1 * m1.row(c).adjoint() * m1.row(c).adjoint().adjoint()).eval().template triangularView<Upper>().toDenseMatrix())); |
| } |
| |
| void test_product_syrk() |
| { |
| for(int i = 0; i < g_repeat ; i++) |
| { |
| int s; |
| s = internal::random<int>(1,320); |
| CALL_SUBTEST_1( syrk(MatrixXf(s, s)) ); |
| s = internal::random<int>(1,320); |
| CALL_SUBTEST_2( syrk(MatrixXd(s, s)) ); |
| s = internal::random<int>(1,200); |
| CALL_SUBTEST_3( syrk(MatrixXcf(s, s)) ); |
| s = internal::random<int>(1,200); |
| CALL_SUBTEST_4( syrk(MatrixXcd(s, s)) ); |
| } |
| } |